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ABSTRACT

Algebraic codes have been studied for decades and have extensive applications in communi-

cation and storage systems. In this dissertation, we propose several novel algebraic approaches

for distributed compression and network error protection problems.

In the first part of this dissertation we propose the usage of Reed-Solomon codes for com-

pression of two nonbinary sources. Reed-Solomon codes are easy to design and offer natural

rate adaptivity. We compare their performance with multistage LDPC codes and show that

algebraic soft-decision decoding of Reed-Solomon codes can be used effectively under certain

correlation structures. As part of this work we have proposed a method that adapts list decoding

for the problem of syndrome decoding. This in turn allows us to arrive at improved methods for

the compression of multicast network coding vectors. When more than two correlated sources

are present, we consider a correlation model given by a system of linear equations. We pro-

pose a transformation of correlation model and a way to determine proper decoding schedules.

Our scheme allows us to exploit more correlations than those in the previous work and the

simulation results confirm its better performance.

In the second part of this dissertation we study the network protection problem in the

presence of adversarial errors and failures. In particular, we consider the usage of network cod-

ing for the problem of simultaneous protection of multiple unicast connections, under certain

restrictions on the network topology. The proposed scheme allows the sharing of protection

resources among multiple unicast connections. Simulations show that our proposed scheme

saves network resources by 4%-15% compared to the protection scheme based on simple repe-
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tition codes, especially when the number of primary paths is large or the costs for establishing

primary paths are high.
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CHAPTER 1. Introduction

Algebraic codes have been studied and used in practice for decades since 1950 when Ham-

ming codes were invented. Later on, powerful codes, e.g, BCH codes [1, 2] and Reed-Solomon

codes [3], and polynomial-time efficient decoding algorithms, e.g. Berlekamp-Massey algorithm

[4, 5], were invented. These codes have been used for the purpose of error correction in point-to-

point communications systems including satellite communications, storage systems and wireless

communications extensively. In this dissertation, we shall apply algebraic approaches in several

novel ways in distributed compression and network error protection.

1.1 Algebraic approaches to distributed compression

Distributed compression, also known as distributed source coding schemes are useful in the

sensor networks, where the large number of sensors observe the correlated sources and the fusion

center wants to reconstruct all the sources. Because the sensor has limited power and computa-

tional ability, it will be beneficial if the encoding can be done separately while at the same time

the correlation between sources can still be exploited. In distributed compression problems, we

consider multiple correlated sources generating independently identically distributed random

symbols over finite fields over time. The encoders at the sources do not communicated with

each other. The correlation is known by the decoder and exploited in the decoding process

to provide better compression efficiency, i.e., lower transmission rate. In this dissertation, we

target at lossless recovery of the sources at the decoder. The rate region and the theoretical
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achievability scheme was proposed by Slepian and Wolf [6]. The work of Cover generalized

the region to multiple sources case [7]. Then, following the work of [8] that established the

equivalence between the two-source Slepian-Wolf problem and channel coding, a lot of research

work has addressed this problem (see [9] and its references). However, by and large most of

the work considers the case of two binary sources that are related by an additive error. The

focus has been put on probabilistic codes, i.e., LDPC codes [10, 11, 12, 13] and Turbo codes

[14, 15, 16]. In this dissertation, we consider two significantly harder problems that do not have

satisfactory solutions at the present time. These include the case of two nonbinary sources and

the case of multiple binary sources.

First, we propose an algebraic coding scheme for nonbinary sources using Reed-Solomon

codes that work under more general correlation models than an additive error model. The

algebraic soft decision decoding algorithm for Reed-Solomon codes proposed by Koetter and

Vardy [17] is modified for the distributed source coding problem. The advantage of using Reed-

Solomon codes are, 1) The code design problem is trivial. One only needs to specify the code

parameters, i.e., the code length and the code rate. 2) It is a natural way to exploit nonbinary

correlation model since the Reed-Solomon codes are defined over nonbinary fields. 3) It offers

natural rate adaptivity by definition. Rate adaptivity is a desired property if there is a low rate

feedback channel from the decoder to the encoder. If in the first trial the transmission rate is

not high enough so that the decoder can not decode successfully, the encoder can send some

additional symbols to the decoder. The rate adaptivity property of a code allows the decoder

to use the additional symbols together with previously received symbols to attempt decoding

again.

One previously proposed approach for compressing two nonbinary sources is to use several

LDPC codes, each for a bit level of the binary image [18] along with multistage decoding. This
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approach breaks down the symbol level correlation to bit level correlations. When the corre-

lation is essentially at the symbol level, multistage LDPC codes may not be the most suitable

approach. In this dissertation we evaluate and compare the performance of Reed-Solomon codes

and multistage LDPC codes. Our simulations show that in the classical Slepian-Wolf coding

scenario without any feedback, under q-ary symmetric correlation models, Reed-Solomon codes

outperform the dedicated LDPC codes optimized for AWGN channels and the rate adaptive

LDPC codes proposed in [11]. Under sparse correlation models, Reed-Solomon codes perform

better than rate adaptive LDPC codes when the correlation resembles q-ary symmetric mod-

els. In the feedback scenario, the performance of rate-adaptive LDPC codes and Reed-Solomon

codes are comparable under q-ary symmetric channels but under sparse correlation model,

rate-adaptive LDPC codes perform better than Reed-Solomon codes. Moreover, when the cor-

relation given to the decoder is slightly different from the true correlation model, Reed-Solomon

codes suffer little but multistage LDPC codes suffer significantly.

The general Slepian-Wolf code design problem with N (> 2) sources is well known to be

challenging. The joint probability mass function is given by an N -dimensional matrix with

2N entries. Under general correlation model, it is not clear how to relate the Slepian-Wolf

coding problem to channel coding problem because the dimension is increased. In [19], a

restricted correlation model is considered and the channel coding-based scheme is proposed.

More specifically, assuming that a capacity-achieving channel code is used, the proposed scheme

there achieves optimal sum rate when the source correlation is specified only by the modulo-2

sum of all sources. It requires all subsets of size N − 1 and smaller to be independent. If there

are more correlations except the total sum, the scheme ignores them, resulting in a suboptimal

rate. In this dissertation, we propose a Slepian-Wolf coding scheme that works for more general

correlation models. We consider a model where the correlation between the sources is given by
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the sums of the subsets of sources, i.e., specified by a system of linear equations. Our proposed

coding scheme is able to exploit these correlations in a judicious manner, assuming that a

series of rate-adaptive codes are used. Based on the correlation model, our scheme reduces the

problem to several channel coding problems in order to capture more correlations. The main

approach is based on linear algebra and motivated by Gaussian elimination. In general, our

scheme has a lower sum rate than the scheme in [19]. A key aspect of our work is the design

of an appropriate decoding schedule that allows us to be strictly better than straightforward

applications of the scheme in [19] in our setting.

Besides approaching distributed compression problems using algebraic codes, we also in-

vestigate the list decoding-based approach to improve compression of sparse vectors. In this

problem, the vectors to be compressed have components from finite fields. The number of

non-zero entries in a vector is limited. We can use error control codes and syndrome decoding

to compress the vector [20, 21]. The novel contribution in this dissertation is to apply list

decoding to syndrome decoding. It improves the error correction capability compared to tra-

ditional minimum distance decoding and thus allows better compression of vectors over finite

fields. The transformation method proposed for this problem is a special case of the Slepian-

Wolf coding problem. We shall describe our idea and an application in compressing network

coding vectors. The network coding vector compression problem was proposed in [22] and an

error decoding based scheme was proposed in that paper. In this dissertation we shall propose

erasure decoding and list decoding based schemes that both have less overhead than the error

decoding based scheme.
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1.2 Algebraic approaches to network error correction

Protection of networks against faults and errors is an important problem. Networks are

subject to various fault mechanisms such as link failures, adversarial attacks among others and

need to be able to function in a robust manner even in the presence of these impairments. In

order to protect networks against these issues, additional resources, e.g., spare source-terminal

paths are usually provisioned. A good survey of issues in network protection can be found

in [23]. Network coding approach [24] allows intermediate nodes in the network to code the

incoming data packets and it has been shown in [24] that with network coding one can achieve

max-flow min-cut bound in multicast transmissions. Recently, the technique of network coding

was applied to the problem of network protection. The protection strategies for link-disjoint

unicast connections in [25, 26] perform network coding over protection paths, which are shared

by connections to be protected. These schemes deal exclusively with link failures, e.g., due to

fiber cuts in optical networks, and assume that each node knows the location of the failures at

the time of decoding. In this dissertation we consider the more general problem of protection

against errors. An error in the network, refers to the alteration of the transmitted data unit in

some manner such that the nodes do not know the location of the errors before decoding. If

errors over a link are random, classical error control codes [20] that protect individual links may

be able to help in recovering data at the terminals. However, such a strategy will in general

not work when we consider adversarial errors in networks. An adversary may be limited in

the number of links she can control. However for those links, she can basically corrupt the

transmission in any arbitrary manner. An error correction code will be unable to handle a

computationally unbounded adversary who knows the associated generator matrix and the

actual codes under transmission. This is because she can always replace the actual transmitted
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codeword by another valid codeword.

In this dissertation we investigate the usage of network coding over protection paths for

protection against adversarial errors. Protection against link failures in network-coded multi-

cast connections was discussed in [27]. The problem of network error correction in multicast

has been studied to some extent. Bounds such as Hamming bound and Singleton Bound in

classical coding theory are generalized to network multicast in [28, 29]. Several error correction

coding schemes are proposed, e.g., [30, 31, 32]. However, these error correction schemes work

in the context of network-coded multicast connections.

In this work we attempt to simultaneously protect multiple unicast connections using net-

work coding by transmitting redundant information over protection paths. Note that even the

error-free multiple unicast problem under network coding is not completely understood given

the current state of the art [33]. Therefore we consider the multiple unicast problem under

certain restrictions on the underlying topology. In our work we consider each individual uni-

cast to be operating over a single primary path. Moreover, we assume that protection paths

passing through the end nodes of each unicast connection have been provisioned. Our work is a

significant generalization of [25]. We assume the omniscient adversary model [31], under which

the adversary has full knowledge of all details of the protocol (encoding/decoding algorithms,

coefficients, etc.) and has no secrets hidden from her. An adversary changes data units on

several paths, which may be primary paths or protection paths. The number of errors equals

the number of paths the adversary attacks. If multiple paths share one link and the adversary

controls that link, it is treated as multiple errors. We shall demonstrate suitable encoding

coefficient assignments and decoding algorithms that work in the presence of adversarial errors

and failures. Our schemes enable all nodes to recover from ne errors, provided that 4ne protec-

tion paths are shared by all the connections. More generally, if there are ne adversarial errors
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and nf failures, a total of 4ne + 2nf protection paths are sufficient. We emphasize that the

number of protection paths only depends on the number of errors and failures being protected

against and is independent of the number of unicast connections. Simulation results show that

if the number of primary paths is large, the proposed protection scheme consumes less network

resources compared to the 2+1 protection scheme, where 2+1 means that we use two dedicated

additional paths to protect each primary connection.

1.3 Dissertation outline

Here is the outline of the dissertation.

In Chapter 2 we provide brief introductions to error control coding, network coding and dis-

tributed source coding. The preliminaries on Reed-Solomon codes and list decoding algorithms

are also presented.

Chapter 3 considers algebraic codes for Slepian-Wolf coding problem. The Reed-Solomon

code-based asymmetric Slepian-Wolf code design and the decoding algorithm are first described,

followed by the performance comparisons with a single LDPC code. Then the performance

comparisons of Reed-Solomon codes and multistage LDPC codes under the classical Slepian-

Wolf scenario and the feedback scenario are presented respectively. The coding scheme for

symmetric Slepian-Wolf coding under additive error correlation model is also investigated.

Chapter 4 considers distributed source coding for multiple sources under linear correlation

models. A brief review of the work in [19] is first presented together with more insights that

motivates our solution. Next, we present a motivating example and then the our proposed

scheme. Some simulation results showing the advantage of our scheme are given.

In Chapter 5 we investigate the list-decoding based scheme for compressing sparse vec-

tors. The background and previous work on compressing network coding vectors are provided,
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followed by the novel approaches based on erasure decoding and list decoding.

Chapter 6 considers network error correction problem. The network model and the encoding

protocol are presented first, followed by our approaches for recovery from a single error, multiple

errors and a combination of errors and failures. The simulations show our proposed coding

schemes save network resource compared to the simple repetition code-based scheme.

The conclusions and future work are discussed in Chapter 7.
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CHAPTER 2. Backgrounds and preliminaries

2.1 Preliminaries on error control coding and list decoding algorithms

2.1.1 Error control codes and syndrome decoding

In communication systems, the error control codes are invented to recover transmitted data

from errors. In this dissertation, we shall focus on linear block codes on finite field of size q,

denoted by Fq or GF (q). q is some power of two, so the addition and subtraction operation

over Fq are the same. Suppose the message to be transmitted m is a vector of length k from

the finite field Fq. A (n, k) linear block code over a finite field Fq maps each message of length

k to a codeword c of length n (i.e. an n-length vector ∈ Fq) by multiplying the message m with

a k-by-n full rank matrix G called generator matrix. The set of codewords form a vector space

of dimension k, spanned by the rows of G. The codeword is transmitted through a channel,

which introduces an error e. Assuming after demodulation, a hard decision is performed. The

receiver vector is r = c + e. e and r are both from Fq and the addition operation is over Fq.

The decoder takes r as input and attempts to find the correct c. In classical coding theory, the

errors are modeled according to their Hamming weight, i.e., the number of nonzero elements

in e. The Hamming distance between two vectors from Fn
q is the number of locations where

the two vectors differ. The commonly used decoding rule is minimum distance decoding, i.e.,

given the received vector r, find the codeword c that is closest to r in Hamming distance sense.

An important design parameter of a code is the minimum Hamming distance d, i.e., the
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minimum of the Hamming distances between any two codewords. A code with minimum

distance d is able to correct up to t0 , ⌊(d− 1)/2⌋ errors, i.e., as long as the Hamming weight

of e, wt(e) ≤ ⌊(d−1)/2⌋, the decoder can find the error pattern e and the transmitted codeword

c. The output of the decoding is unique.

Instead of defining a code from generator matrix perspective, it is usually interesting to

define a code from its parity check matrix. The parity check matrix of a linear block code is

a (n − k) × n full rank matrix H such that cHT = 0 (matrix multiplication over GF (q)) for

every codeword c. Essentially the rows of the parity check matrix define the null space of the

codeword space. The syndrome is defined to be a length-(n− k) vector s = rHT . A practical

decoding algorithm for a linear block is called syndrome decoding. The decoder first computes

the syndrome s = rHT from the received vector r. Since rHT = cHT + eHT , s = eHT ,

implying that the syndrome only depends on the error pattern. It then attempts to find the e

with the minimum Hamming weight.

For a general H, finding the error e with minimum weight is computationally difficult.

However, for some special classes of codes, if wt(e) < t0, the error pattern e can be found

efficiently, e.g. for Reed-Solomon or BCH codes, such algorithm is called Berlekamp-Massey

algorithm. This essentially is doing bounded distance decoding, i.e., the decoder looks for a

codeword c with in a Hamming sphere of radius t0 centered at r. If the number of errors is less

than t0, the decoder gives a unique output, otherwise, the decoder reports decoding failure as

long as r does not fall into a sphere of radius t0 centered at another codeword.

The syndrome decoding problem can be viewed as a sparse recovery problem over finite

fields. We are able to recover a length-n vector e from a length n− k vector s = eHT provided

that e contains at most t0 nonzero entries. This can be generalized to soft decoding scenario,

e.g. if H is a parity check matrix of a LDPC code and the initial likelihoods of e is provided
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to the belief propagation decoder, e can be recovered as long as the code rate is lower than the

channel capacity. The provides a compression scheme over finite fields.

It is proved that the minimum distance of a (n, k) linear block code is at most n − k + 1

(Singleton bound). The codes that achieve the upper bound is called Maximum Distance

Separable (MDS) code. For an MDS code, the traditional error correction capability t0 = ⌊n−k
2 ⌋.

Reed-Solomon codes are a class of well-known MDS codes.

2.1.2 Reed-Solomon codes

Reed-Solomon codes are a class of nonbinary linear block MDS codes that have nice algebraic

structure and wide applications. The parity check matrix of a (n, k) Reed-Solomon code is

HRS =



1 α α2 · · · αn−1

1 α2 (α2)2 · · · (α2)n−1

...
...

...
...

...

1 αn−k (αn−k)2 · · · (αn−k)n−1


,

where α is a primitive element of Fq and n = q−1. The code space CRS = {c ∈ Fn
q : cHT

RS = 0}.

An equivalent definition of Reed-Solomon code is given by polynomial evaluation. Given a

message vector m of length k, it can be viewed as coefficients of a polynomial of degree k − 1,

fm(X ) = m0 +m1X +m2X 2 + · · ·+mk−1X k−1.

The encoded codeword is given by evaluating the message polynomial fm(X ) (of degree k− 1)

at n points {1, α, α2, . . . , αn−1}, i.e., c = [fm(1), fm(α), . . . , fm(αn−1)]T . Enumerating all

possible messages m, we obtain the same codeword set CRS as above. If we write the nonzero

elements from Fq: {1, α, α2, . . . , αn−1} as {α1, α2, . . . , αn}, the codeword can be written as

c = [fm(α1), fm(α2), . . . , fm(αn)]
T . Note that αi tells the location of a component in a vector.

It is known by the encoder and decoder trivially.
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The traditional syndrome decoding algorithm (unique decoding) for Reed-Solomon codes is

called Berlekamp-Massey algorithm and it can correct up to ⌊(n− k)/2⌋ errors.

2.1.3 List decoding and Guruswami-Sudan algorithm

If we enlarge the search radius beyond t0 while decoding, that is, try to look for codewords

in the Hamming sphere of radius t > t0 centered at r, then the number of such codewords

may not be unique and the algorithm could return a list of such codewords. Such decoding

algorithm is called list decoding algorithm. Formally, the list decoding problem can be stated

as follows.

List decoding problem. Given a received word r = c + e, find the list of all codewords c’s

within Hamming distance t > t0 of r.

As long as wt(e) ≤ t, the actual codeword x will appear in the list. The final unique output

can be selected from the list based on additional information such as soft information from the

channel or side information. In list decoding literature, the decoding is claimed successful if

the transmitted codeword is on the output list.

The list decoding algorithm has been studied to some extent (see [34] for a survey). Prac-

tical polynomial time list decoding algorithm for Reed-Solomon codes has been proposed by

Guruswami and Sudan [35] to correct up to n−
√
nk errors.

The input to the Guruswami-Sudan (GS) algorithm is the received vector r after hard

decision. It can be viewed as n points (αi, ri), i = 1, 2, . . . , n. The output of the algorithm is

a candidate list of degree k − 1 message polynomials f(X ) such that f(αi) = ri for at least

n − t values of i, where t = n −
√
nk. Since from a message polynomial we can easily get the

corresponding codeword, the output of the GS algorithm indicates that it precisely solves the

list decoding problem described above.
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The GS algorithm consists of two main steps, interpolation and factorization. In the inter-

polation step, the decoder finds a bivariate polynomial Q(X ,Y) such that it satisfies a certain

degree constraint (has minimum (1, k − 1)-weighted degree) and have zeros of multiplicity m

at all received points (αi, ri). In the factorization step, the decodes finds all polynomials with

degree at most k−1 such that Y −f(X )|Q(X ,Y). It has been shown in [35] that if the number

of errors in the received vector r is at most t, where t = n −
√
nk, the transmitted codeword

will appear on the candidate list.

2.1.4 Koetter-Vardy algebraic soft-decision decoding algorithm

So far we have discussed the decoding algorithms for hard-decision decoding, i.e., the de-

coder input is the hard-decision symbols from finite fields. It is well known that the soft

information obtained from the channel output is helpful in the decoding [20]. Koetter and

Vardy proposed [17] an algebraic soft-decision decoding algorithm for Reed-Solomon codes

based on Guruswami-Sudan algorithm.

Let γ1, . . . , γq be a fixed ordering of the elements from Fq. The soft information to the

decoder is given by the demodulator in terms of a q-by-n reliability matrix Π = {πij = P (cj =

γi|yj)} based on the information from the channel, where yj is the channel output, usually

one or several complex baseband samples. The Koetter-Vardy soft decoding algorithm [17]

first computes a multiplicity matrix M from Π. The simplest choice is M = ⌊λΠ⌋, where λ is

a positive real number. In channel coding at moderate or high SNR region, the multiplicity

matrix usually contains a lot of zeros. Note that the row index of M can also be given by an

element from the Fq, we have another notation for the matrix element mij , i.e., mj(β) = mij

if β = γi.

Next, the decoder performs interpolation step similar to GS algorithm. It constructs a
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bivariate polynomial QM (X ,Y) with minimal (1, k − 1)-weighted degree that passes through

every point (αj , γi), mij times. These algebraic constraints can be given by C(M) linear

constraints, where

C(M) =
1

2

q∑
i=1

q∑
j=1

mij(mij + 1)

is called the cost ofM . The decoder then identifies all the factors of QM (X ,Y) of type Y−f(X ),

where f(X ) has degree no more than k−1 as the factorization step in the GS algorithm. Among

these, it picks the candidate with the highest likelihood based on the reliability matrix.

The score of a vector v with respect to a multiplicity matrix M is defined to be SM (v) =∑n
j=1mj(vj), i.e., the sum of the multiplicities corresponding to the vector v. If the entries in

M corresponding to the transmitted codeword c have large values, then c has high score w.r.t.

M . It has been shown [17] that as long as the score of a codeword

SM (c) ≥ ∆1,k−1(C(M)), (2.1)

c will appear on the candidate list, i.e., the decoding is successful. ∆1,k−1(C(M)) is defined in

[17] and depends on k and C(M) (increases with them)1. The condition in (2.1) is called score

condition.

Once the multiplicity matrixM is determined, we know whether a codeword is on the output

list or not by checking the score condition. The last step of picking the unique codeword via

Maximum-Likelihood decision is usually correct. Thus, the performance of the algebraic soft

decoding algorithm depends on the multiplicity assignment.

1The precise form of the ∆1,k−1(C(M)) is

∆1,k−1(C(M)) = min

{
δ ∈ Z : ⌈ δ + 1

k − 1
⌉
(
δ − k − 1

2
⌊ δ

k − 1
⌋+ 1

)
> C(M)

}
.

It is the minimum (1, k − 1) weighted degree of QM (X ,Y) such that QM (X ,Y) exists. A looser bound of
∆1,k−1(C(M)) is given by ∆1,k−1 ≤

√
2(k − 1)C(M). Thus, a simpler but slightly looser form of the score

condition is SM (c) ≥
√

2(k − 1)C(M).
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2.2 Preliminaries on Slepian-Wolf coding

Consider two sources X and Y . Let RX and RY denote the rates at which the sources

operate. This means that the source X and Y transmit RX and RY bits per unit time to the

terminal.

Theorem 1. Slepian-Wolf Theorem [6]. Consider memoryless correlated sources X and Y

from alphabets X ,Y respectively, with joint distribution p(X,Y ). Suppose that

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X,Y ),

There exist encoding functions f1 : X n → {1, 2, . . . , 2nRX} at source X and f2 : Yn →

{1, 2, . . . , 2nRY } at the source Y and a decoding function g : {1, 2, . . . , 2nRX}×{1, 2, . . . , 2nRY } →

X × Y at the terminal, such that the terminal is able to recover the source sequences with ar-

bitrary small error probability as n goes to infinity. Conversely, if RX , RY do not satisfy those

conditions, it is impossible to recover the sources with small error probability.

The rates satisfying conditions are called achievable rates and they form a region in the two

dimensional plane shown in Fig.2.1.

The two corner points on the boundary are interesting. They correspond to rate allocations

(RX , RY ) = (H(X),H(Y |X)) or (RX , RY ) = (H(X|Y ),H(Y )). In order to achieve one of

these points, say the first one, since RX = H(X), any lossless compression scheme can be used

to compress x. Then, x is used as side information to help decode y at the decoder. The rate

of Y is H(Y |X), i.e., the amount of uncertainty of Y given X.

Code design in the case when side information is available at the decoder, is called the

asymmetric Slepian-Wolf coding problem. Code design for achieving any general point is called
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Figure 2.1 Slepian-Wolf Region

the symmetric Slepian-Wolf coding problem. There are many practical code designs for both

asymmetric coding and symmetric coding when we have only two binary sources [9]. Generally

speaking asymmetric Slepian-Wolf coding is easier than symmetric case, because of a certain

equivalence with channel coding. Most practical coding schemes are proposed for binary sources

based on LDPC codes or Turbo codes [36, 10, 11, 12, 37, 38, 13].

Next, we demonstrate that syndrome decoding can be applied to asymmetric Slepian-Wolf

coding. Assume the source sequences x,y have length n and the correlation model is that

the Hamming distance between them is no more than t0, i.e., they differ at most t0 positions.

Suppose x is available at the decoder. At source Y , we transmit yHT to the terminal. The

terminal computes (x + y)HT = eHT , where e = x + y acts as the error pattern in channel

coding scenario. We know that x and y differ at most t positions, so wt(e) ≤ t0. This is precisely

the syndrome decoding problem. The decoder is able to find e as long as the minimum distance

of the channel code is at least 2t0 + 1. Once e is obtained, y = x+ e can be easily computed.

Thus, a length-n vector y is compressed to a length-(n− k) vector yHT .

Similar ideas can be applied to probabilistic correlation models. Consider binary sources

X and Y that are uniformly distributed. The correlation between them is that the probability
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that they are different is p < 0.5. Then, H(Y |X) = Hb(p)
2and H(X,Y ) = 1 + Hb(p). In an

asymmetric Slepian-Wolf coding setting, suppose that the decoder knows x. Take the parity

check matrix of a capacity-achieving code H and the source Y transmits yHT . The terminal

finds the estimate of y,

ŷ = x+ fdec(xH
T + yHT ),

where fdec(eH
T ) is the decoding function of the error control code and gives an estimate of e.

It can been shown that in theory there exists an H and the decoding function fdec(·) such that

the code rate k/n achieves the binary symmetric channel (BSC) capacity 1 − Hb(p) and the

decoding error can be made arbitrarily small [39] as n goes to infinity. Thus, the probability

that ŷ ̸= y is arbitrary small. Note that the length of vector transmitted by source Y is n− k,

so the transmission rate of Y is

RY = (n− k)/n = 1− k/n = Hb(p) = H(Y |X).

Thus, using a capacity-achieving channel code, we can achieve the corner point (H(Y |X),H(X))

of the Slepian-Wolf region.

In practice, LDPC codes come very close to the BSC capacity. The belief propagation

algorithm (BPA) acts as the decoding function fdec(·). Turbo codes can also be used to achieve

compression via puncturing at the encoder; the extrinsic information exchange at the decoder

exploits the correlation between the sources [14, 15, 16]. The majority of previous work on

Slepian-Wolf code design consider the binary symmetric correlation model as described above.

As mentioned in Chapter 1, we shall propose algebraic-code based Slepian-Wolf code design

for two nonbinary sources in Chapter 3.

So far we have discussed Slepian-Wolf coding for two sources. The work of Cover generalized

the rate region to multiple sources case [7] as follows. Suppose the sources X1, X2, . . . , XN are

2Hb(p) is the binary entropy function defined as Hb(p) = −p log2 p− (1− p) log2(1− p).
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generating i.i.d. symbols according to the joint distribution p(x1, x2, . . . , xN ). Let Ri denote

the rate for source Xi and S denote a nonempty subset of node indices: S ⊆ {1, 2, . . . , N}. Let

XS denote the set of random variables {Xi : i ∈ S}. The rate region is given by

∑
i∈S

Ri ≥ H(XS |XSc) for all S ̸= ϕ.

Very few work has been done on addressing the problem of practical Slepian-Wolf code

design for more than two sources. As mentioned in Chapter 1, in [19], a restricted correlation

model is considered and the channel coding-based scheme is proposed. We shall propose a

better approach in Chapter 4 that captures more correlation thus has a lower sum rate.

2.3 Preliminaries on network coding

Traditionally, the intermediate nodes (rounters) in the network only copy and forward

packets. In a single sink unicast connection, routing can achieve maximum flow, which equals

to the minimum cut between the source and the terminal. However, in a multicast scenario,

sometimes purely routing cannot achieve maximum flow as we have seen before. But it has

been shown in [24] that network coding achieves max-flow min-cut upper bound in multicast.

To see this consider Figure 2.2, that depicts the celebrated butterfly network of network coding

[24]. In this example, each edge has single bit capacity. Each terminal seeks to obtain the

bits from both the sources. It is easy to see that if we only allow routing in the network, it is

impossible to support this since the edge in the middle is a bottleneck. However, if we allow

coding at the intermediate nodes and transmit the XOR of the two bits, then both terminals

can obtain the two bits by simple XOR decoding as shown in the figure. This example shows

the potential gain of coding when there are multiple terminals.

The work of [40, 27] shows that the multicast can be supported with linear codes. Basically,
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Figure 2.2 A network with unit-capacity edges and sources S1 and S2 and terminals T1 and
T2. Each terminal wants to simultaneously recover the pair of bits (a, b). Under
routing this is impossible. However, by computing and sending a ⊕ b along the
bottleneck edge, we can achieve simultaneous recovery.

each intermediate node transmits linear combinations of the packets, where a packet is treated

as a vector over a finite field. It can be shown that in this case at each terminal, the received

packets are the source messages multiplied by a transfer matrix. By inverting the transfer

matrix, the terminal is able to recover the source packets. Moreover, as long as the coefficients

of the linear combinations are chosen randomly from a large field and the min-cut between the

source and each destination is greater than the source rate, the probability that the transfer

matrix is invertible is very high [41]. This fact provides a simple distributed randomized scheme

for network coding based multicast. Each intermediate node selects random coefficients and

computes the linear combinations of the incoming packets. Note that in such a distributed

scheme, the terminals need to know the transfer matrix. Each received packet at a terminal is

a linear combination of various source packets. Each row of the transfer matrix contains the

linear combination coefficients for a received packet and it is called network coding vector. In

[42] it was shown that this can be carried in the headers of the packets and the length of the

header equals to the number of source packets.
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CHAPTER 3. Algebraic codes for Slepian-Wolf code design

3.1 Reed-Solomon codes for asymmetric Slepian-Wolf coding

Consider an asymmetric Slepian-Wolf coding scenario where source X is available at the

terminal. If an Reed-Solomon code is used, the encoding for y is its syndrome s = Hy. The

decoder needs to find the most probable ŷ that belongs to the coset with syndrome s. Upon

obtaining x, the decoder finds the reliability matrix Π = {πij = P (Yj = γi|Xj = xj)} based

on the joint distribution. Then, use the multiplicity algorithms to find a multiplicity matrix

M . The simplest choice is M = ⌊λΠ⌋. If the Reed-Solomon code is powerful enough to correct

the errors introduced by the correlation channel, the score SM (y) should satisfy the score

condition. We want to obtain y from the matrix M by interpolation and factorization. Note

that y is not a codeword but belongs to a coset with syndrome s. This requires us to modify the

KV algorithm appropriately. An approach to modify Guruswami and Sudan’s hard decision

decoding algorithm [35] to syndrome decoding was proposed in [43] and [44] independently.

Our approach is motivated by them. Find a z belonging to the coset with syndrome s. This

can be done by letting any k entries in z to be zero and solve Hz = s. The uniqueness of the

solution is guaranteed by the MDS property of the Reed-Solomon code. Construct a shifted

multiplicity matrix M ′ from M according to z, where m′
j(γi) = mj(γi + zj), or, equivalently,

m′
j(γi + zj) = mj(γi), for 1 ≤ i ≤ q, 1 ≤ j ≤ n. Interpolate the QM ′(X ,Y) according to M ′

as in KV algorithm and find the list of candidate codewords Lc by factorization. Adding z to
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each candidate codeword we obtain the set of candidates Ly for y.

Claim: y ∈ Ly if Hy = s and SM (y) ≥ ∆1,k−1(C(M)).

Proof: The interpolation and factorization ensure that if a codeword c is such that SM ′(c) ≥

∆1,k−1(C(M ′)), c ∈ Lc. Note that each column ofM ′ is just a permutation of the corresponding

column of M , so C(M) = C(M ′) and ∆1,k−1(C(M ′)) = ∆1,k−1(C(M)). If a vector y satisfies

Hy = s and SM (y) ≥ ∆1,k−1(C(M)), y+z is a codeword and SM ′(y+z) =
∑n

j=1m
′
j(yj+zj) =∑n

j=1mj(yj) = SM (y) ≥ ∆1,k−1(C(M ′)), thus y + z ∈ Lc. So y ∈ Ly.

Next, the decoder performs ML decoding on Ly based on Π. It is shown in the simulations

that this step is almost always correct. Thus, if y satisfies the score condition, the decoding

is successful (with very high probability). The performance of the algorithm depends on the

multiplicity assignment, during which the correlation between the sources is exploited.

Remark:

1. The soft information we used is the conditional pdf P (Y |X). It does not require the

correlation model to be additive. So it is suitable for more general correlation models.

2. If the sources have memory, the algorithm can be run on a generalized reliability matrix

Π′ = {πij = P (Yj = γi|x)}. And Π′ can be find by MAP symbol-by-symbol decoding,

using algorithms such as BCJR algorithm.

3. Reed-Solomon codes enable rate adaptivity easily because of the structure of the parity

check matrix. Suppose a syndrome H1y is available at the decoder but the decoding

fails. The terminal wants to know H2y, where H2 has (n − k2) rows and k1 ≥ k2. We

can transmit additional inner products of y and newly added rows in H2 and together

with the syndrome received previously, the decoder obtains the syndrome H2y. Then the

decoder works for a code with lower code rate.
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3.2 Comparison with a single LDPC code

Reed-Solomon codes are Maximum Distance Separable (MDS) codes. However, it is well

known that Reed-Solomon codes are not capacity-achieving over probabilistic channels such

as the BSC and the q-ary symmetric channel. On the other hand, LDPC codes are capacity-

achieving under binary symmetric channels. It is expected and observed in simulation that

for binary correlated sources, LDPC codes have better performance. However, we expect that

Reed-Solomon codes could be a better fit for sources over large alphabets, at least for the

channels that resemble deterministic channels, e.g., q-ary symmetric channels.

One simple way to use LDPC codes in nonbinary Slepian-Wolf coding is to use a single LDPC

code to encode the binary image of the nonbinary symbols. Consider a correlation model for

sources X and Y expressed as X = Y +E, where X,Y,E ∈ F512 such that E is independent of

X and the agreement probability Pa = P (E = 0) = 1− pe, P (E = γ) = pe/(q − 1) for nonzero

γ ∈ F512. X and Y are uniformly distributed. This is called q-ary symmetric correlation

model. Reed-Solomon codes are defined over F512 with length 511. The LDPC codes for

comparison have length 4599 and a maximum variable node degree of 30 and were generated

using the PEG algorithm [45]. For a given source pair, we use one LDPC code and encode

for the binary image of the source outputs and the initial bit level LLR for belief propagation

decoding is found by appropriate marginalization. We used three different code rates. For each

code, we increase Pa (decrease H(Y |X)) until the frame error rate was less than 10−3 and

recorded the corresponding H(Y |X) as the maximum H(Y |X) that allows us to perform near

error-free compression. The results are available in Table 3.1. We observe that LDPC has

larger gap between the H(Y |X) and the actual transmission rate than Reed-Solomon codes.

As expected, Reed-Solomon codes also have a gap to the optimal rate. We also run the unique
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Table 3.1 Comparison of Reed-Solomon codes and LDPC codes
k/n Tx Rate (bits/sym) Reed-Solomon max H(Y |X) LDPC max H(Y |X)

0.2 7.2 5.3175 3.7855

0.3 6.3 4.3770 3.3740

0.5 4.5 2.8474 1.7271

decoding algorithm for Reed-Solomon codes (Berlekamp-Massey algorithm) and observe that

the performance is better than LDPC codes but worse than KVA.

3.3 Comparison with multistage LDPC codes: Classial Slepian-Wolf

scenario

3.3.1 Multistage LDPC codes

Multistage LDPC codes have been proposed for Slepian-Wolf coding for nonbinary alphabets

in prior work [18]. To compress a source with alphabet size q, we can view it as r = log2 q binary

sources. Suppose X is known at the terminal and the source Y is represented as bit sources

Yb1 , Yb2 , . . . , Ybr . where r = log q. For every realization of X, the conditional distribution

P (Y |X = x) gives us a joint distribution of the bit sources P (Yb1 , Yb2 , . . . , Ybr |X = x), which

can be marginalized to provide conditional probabilities P (Ybk |Yb1 , . . . , Ybk−1
, X = x). The

source transmits the syndromes of each bit source sequence, sk = Hkybk , k = 1, 2, . . . , r, where

Hk is the parity check matrix of a LDPC code. At the decoder, the side information X is given,

and to decode the kth bit source, the previous decoded bit sources can also be used as side

information, based on which the initial LLR is computed. The initial log likelihood radio input

to the LDPC decoder for the ith position is given by P (ybk(i)|ŷb1(i), ŷb2(i), . . . , ˆybk−1
(i), X = x),

where ŷb1(i), ŷb2(i), . . . , ˆybk−1
(i) are the previously decoded bits. The decoding requires us to

decode r LDPC codes.

The design of optimized LDPC codes for our problem requires us to consider the individual
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bit level channels and the distribution of the input LLRs at each bit level. This is a somewhat

complicated task and is part of ongoing work. Here we use the following two designs for

comparison.

3.3.1.1 Dedicated LDPC codes

We optimize the degree distribution using density evolution for AWGN channel. Then,

the code of length 512 is designed by PEG algorithm1. We design LDPC codes with rates

0.02, 0.04, 0.06, . . . , 0.90, a total of 45 codes. These codes are designed separately and do not

provide rate adaptivity.

3.3.1.2 Rate-adaptive LDPC codes

Designed in [46], these irregular LDPC codes have length 6336 and the code rate can be

chosen among {0/66, 1/66, . . . , 64/66}. The structure of their parity check matrices allow us

to use them in a rate-adaptive manner. Note that these codes have a very high block length.

3.3.2 Simulation setting

We consider classical Slepian-Wolf coding scenario. Given a correlation model, we gradually

increase the transmission rate until the frame error rate is less than 10−3. The decoder attempts

decoding only once. For LDPC codes, a frame is in error if one of the decodings is in error.

When we adjust the transmission rate, we adjust the rate of the LDPC codes for each bit

source, so that the FER for each bit source are of the same order. To get the FER< 10−3 at

nonbinary symbol level, the FERs at the bit level are roughly 10−4. For each rate configuration,

1We need to choose a block length for each LDPC code so that the comparison with the Reed-Solomon code
of length 255 (8-bit symbols) is fair. We chose a length of 512, that is approximately 2×255. With higher LDPC
block lengths, one can expect better performance.
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Table 3.2 Detailed simulation results for a q-ary symmetric correlation model. Dedi-
cated LDPC codes. Alphabet size q = 256. Agreement probability Pa = 0.9.
H(X) = H(Y ) = 8, H(Y |X) = 1.268, Gap = 1.662.

Bit Source 1 2 3 4 5 6 7 8

Conditional Entropy 0.287 0.217 0.171 0.142 0.124 0.114 0.108 0.105

Transmission Rate 0.559 0.439 0.398 0.359 0.318 0.299 0.279 0.279

Bit Source FER (10−4) 1.617 3.719 2.102 2.264 2.102 2.021 2.587 2.345

we simulate until the number of error frame is at least 100. The maximum iteration time of

the belief propagation algorithm is 100.

We present some detailed results of multistage LDPC codes for q-ary symmetric channels

to demonstrate how the simulation is done. Table 3.2 shows the results under q-ary symmetric

correlation model with agreement probability 0.9. The conditional entropy for the kth bit

source is H(Ybk |Yb1 , . . . , Ybk−1
, X). The sum of the conditional entropies equals to H(Y |X) and

the sum of the transmission rates equals to the total transmission rate. For other correlation

models, the simulations of multistage LDPC codes are done in a similar manner. For Reed-

Solomon codes, the field size q = 256 and the length n = 255. λ = 100.99 in the multiplicity

assignment. We increase the transmission rate until the FER < 10−3. The decoder attempts

decoding only once.

3.3.3 q-ary symmetric correlation model

The simulation results for q-ary (q = 256) symmetric correlation model under different

agreement probabilities are given in Fig. 3.1. The gaps between actual transmission rates and

H(Y |X) are presented. Larger gap indicates worse performance. The conditional entropies

H(Y |X) are given in Table 3.3. We observe that under q-ary symmetric correlation models

Reed-Solomon codes outperform both types of LDPC codes. This coincides with our intuition
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since the q-ary symmetric is favorable for Reed-Solomon codes. Note that Reed-Solomon codes

performs better when the agreement probability Pa is very high or very low. For low Pa, a

Reed-Solomon code with low rate is used and it is observed before [17] that the Koetter-Vardy

algorithm performs better for low rate codes. When Pa is very low, for multistage LDPC codes,

only a portion of bit sources can be compressed, several bit sources need to be transmitted at

rate one. When Pa = 0.2, LDPC codes do not offer any compression, but the conditional

entropy is also close to log q, that is why the gap decreases.
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Figure 3.1 The gap between the transmission rate and H(Y |X) for multistage LDPC and
Reed-Solomon codes under q-ary symmetric models.

3.3.4 Sparse correlation model

When the correlation model becomes more general, Reed-Solomon codes do not always

outperform LDPC codes. Under the correlation model where each column of the conditional

probability matrix P (Y |X = j) contains a few dominant terms, it is possible that Reed-Solomon
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Table 3.3 The conditional entropies for q-ary symmetric correlation models.
Agreement probability H(Y |X)

0.2 7.11741

0.3 6.47734

0.4 5.76756

0.5 4.99718

0.6 4.16869

0.7 3.2796

0.8 2.3208

0.9 1.26843

codes still perform well. We call such kind of correlation models to be sparse. We shall compare

the performance of multistage LDPC codes and Reed-Solomon codes under sparse correlation

models defined as follows.

Definition 1. We say a conditional pdf P (Y |X) is (S, ϵ)-sparse if for every j = 1, . . . , q,

P (Y = i|X = j), i = 1, . . . , q have S entries that are greater than ϵ.

We are mostly interested in (S, ϵ)-sparse conditional pdf P (Y |X) with S ≪ q and ϵ≪ 1, i.e.,

for each j, P (Y = i|X = j) has few dominant entries. For those entries with probability mass

less than ϵ, we assume that the probabilities are the same. For example, the conditional pdf of

a q-ary symmetric correlation model with q = 256 and agreement probability 0.8 is (1, 10−3)-

sparse since 0.2/255 < 10−3. When X is uniformly distributed, the joint pdf is also sparse and

we call such a correlation model, a sparse correlation model. For a (S, ϵ)-sparse conditional

pdf P (Y = i|X = j), denote the vector of the S dominant entries by D(j). We assume that

the dominant entries are the same for all j and denote them by D. For example, for a q-ary

symmetric correlation model with q = 256 and Pa = 0.8, D = [0.8] and it is (1, 10−3)-sparse.

For a fixed D, there are a lot of choices of the locations of the dominant entries. We consider

the following dominant entry patterns.
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The dominant entries can be put in the diagonal form, a generalization of q-ary symmet-

ric correlation model. The largest entries are on the diagonal of the conditional pdf matrix

and other entries are put around them. For example, consider a joint pdf with (3, 10−3)-

sparse conditional distribution and D = [0.1 0.6 0.1]. When it is placed in the diagonal form,

P (Y = j|X = j) = 0.6 for all j, P (Y = j − 1|X = j) = 0.1 for all j except j = 1, P (Y =

j+1|X = j) = 0.1 for all j except j = 256 and P (Y = 256|X = 1) = P (Y = 1|X = 256) = 0.1.

All other entries are (1−0.1−0.6−0.1)/253 < 10−3. The dominant entries in a conditional pdf

is said to be in the random form if D is uniformly randomly placed in the column P (Y |X = j).

Note that this randomness only appear in the determination of the pdf and it will be fixed

during all transmissions. This correlation model is a model Y = X+E where E depends on X

(data dependent model). Note that different placements of probability masses in the columns

of conditional distribution do not change the conditional entropy H(Y |X), and do not affect

the performance of KV algorithm for Reed-Solomon codes. But the performance of multi-

stage LDPC codes changes when the placement of probability masses changes. In simulations,

multistage LDPC codes performs better under diagonal form conditional distribution than the

random form.

Note that a dominant entry vector could have a number of forms. It is hard to parameterize

it using simple parameters. In our simulations, we fix the length of D to be three and there

is one distinguished large value in the vector. The vectors of dominant entries in conditional

pdf are presented in Table 3.4. They are the same for different j in P (Y |X = j). Other

than dominant entries, other entries have the same probability. They are all (3, 0.0015)-sparse

conditional pdfs. Source X is uniformly distributed. For a vector of dominant entries, we define

peak factor to be the ratio between the maximum entry and the minimum entry in the vector.
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Table 3.4 The D vectors used in the simulations.
D Peak Factor H(Y |X)

[0.15 0.6 0.15] 4 2.394

[0.1 0.6 0.1] 6 3.168

[0.1 0.7 0.1] 7 2.155

[0.1 0.75 0.1] 7.5 1.591

[0.1 0.79 0.1] 7.9 1.079

[0.05 0.6 0.05] 12 3.790

[0.05 0.7 0.05] 14 2.853

[0.03 0.6 0.03] 20 3.989

We show our simulation results in Fig. 3.2, in an ascending order of peak factor (PF). The

plots do not look as smooth as Fig. 3.1. This is because peak factor is not a single parameter for

the pdfs, e.g., for a fixed peak factor, there could be multiple choices of the pdf and we choose

one of them in our simulation. The gaps between actual transmission rates and the conditional

entropies are presented. The alphabet size q = 256. Both random form and diagonal form

conditional pdf are investigated. For Reed-Solomon codes, the performance is the same under

these two forms. We observe the following. The performance of Reed-Solomon codes improves

with the increase of the peak factor. Reed-Solomon codes perform better than rate-adaptive

LDPC codes under the correlation models with large peak factor, while rate-adaptive LDPC

codes perform better than Reed-Solomon codes under the correlation models with small peak

factor. However, dedicated LDPC codes outperform Reed-Solomon for most of peak factor

values.

We also investigate the situation where the decoder is given a slightly different joint pdf.

The actual pdf is in the diagonal form. The pdf provided to the decoder has right locations

for the largest dominant entries but wrong (somewhat arbitrary) locations for another two

smaller dominant entries in D. In this case, the performance of LDPC codes suffer a lot

and Reed-Solomon codes suffer only a little. The results are also presented in Fig. 3.2. It
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is important to note that in this situation, Reed-Solomon codes in fact perform better than

multistage LDPC codes. In a practical setting there may be situations where there are modeling

errors or incomplete knowledge about the joint pdf of the sources. Our results indicate that

Reed-Solomon codes are much more resilient to inaccuracies in correlation models.
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Figure 3.2 The gap between the actual transmission rate and the conditional entropy for
multistage LDPC codes and Reed-Solomon codes under sparse correlation mod-
els. For Reed-Solomon codes, the performance under diagonal form conditional
distribution and random form conditional distribution are the same.

3.4 Comparison with multistage LDPC codes: Feedback scenario

3.4.1 Simulation setting

We consider the second scenario where the decoder feeds back some information and the

actual transmission rates are adapted such that the decoder is able to decode. Reed-Solomon

codes offer natural rate-adaptivity and we compare their performance with the rate adaptive
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LDPC codes designed in [46]. For multistage LDPC codes, after receiving the binary syndromes

from the encoder, the decoder tries to decode from the first bit source. If it fails, it requests

more bits from the source and tries to decode again. The decoder repeats this procedure

until the first bit source is decoded and then moves on to the second bit source and works

in a similar manner. It is guaranteed that the previously decoded bits are always correct.

Two rate-adaptive LDPC codes are used, with length 6336 and 396, both designed in [46].

For Reed-Solomon codes, if the decoder fails (there is no codeword on the candidate list), it

requests more symbols from the source and tries again. The decoder repeats this until the

source sequence is decoded. The amount of feedback is several bits per block for both LDPC

codes and Reed-Solomon codes, depending on the gap. But LDPC codes need more feedback

since the decoder needs to adjust rate for each bit source.

In the simulation, we repeat this experiment 500 times and record the minimum required

transmission rates. The simulation results are the average minimum required rates and their

standard deviation. The average minimum required rate is defined as

µ =

∑N
i=1Ri

N
,

where Ri is the actual transmission rate for the successful decoding in the ith experiment and

N = 500. The standard deviation is defined as

σ =

√√√√ 1

N − 1

N∑
i=1

(Ri − µ)2.

3.4.2 q-ary symmetric correlation models

The gap of the average minimum transmission rate to the conditional entropy is presented

in Fig. 3.3 and the standard deviation is reported in Table 3.5. Reed-Solomon outperform

rate-adaptive LDPC codes when the agreement probability is very high or very low. But for
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intermediate Pa, multistage LDPC codes perform better. For LDPC codes with length 6336,

the standard deviations of the required rates are in the range of 0.08 and 0.1, while LDPC codes

with length 396, the standard deviation are between 0.19 and 0.30. The standard deviations

of Reed-Solomon codes are between 0.13 and 0.32.

Table 3.5 The standard deviation of the minimum required rate for Reed-Solomon codes and
multistage rate-adaptive LDPC codes under q-ary symmetric correlation.
Agreement probability Reed-Solomon LDPC 6336 LDPC 396

0.9 0.264444 0.0919516 0.253576

0.8 0.3218 0.079445 0.301318

0.7 0.317648 0.0907773 0.287648

0.6 0.287628 0.103487 0.283119

0.5 0.249533 0.0894223 0.273045

0.4 0.186838 0.0995807 0.233401

0.3 0.137468 0.0864549 0.19236

0.2 0.0797285 0 0.0709099

3.4.3 Sparse correlation models

The gap of the average minimum transmission rate to H(Y |X) is presented in Fig. 3.4.

The standard deviation of the minimum transmission rates for Reed-Solomon codes and LDPC

codes are presented in Table 3.6 and Table 3.7 respectively. Reed-Solomon performs worse

than both multistage LDPC codes, although the performance improves with the peak factor.

The average rate performance is comparable between LDPC codes with length 6336 and 396,

and between diagonal form and random form correlation models, but length 6336 codes are

much more stable, with standard deviation 0.06 to 0.1. Reed-Solomon codes have standard

deviation between 0.24 and 0.30, and length 396 LDPC codes have standard deviation between

0.11 and 0.27. The results for the case where inaccurate pdfs are provided to the decoder are

also presented and we observe that Reed-Solomon codes are much more resilient and perform
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Figure 3.3 The gap between the average minimum required transmission rate and the con-
ditional entropy for multistage LDPC codes and RS codes under q-ary symmetric
correlation models.

better than LDPC codes with length 6336.

3.5 Symmetric Slepian-Wolf coding for two sources

In this section, we propose a symmetric coding scheme for Reed-Solomon codes when there

are two sources. Here we assume that the correlation between the sources is given by Y = X+E

and E is independent of X.

3.5.1 Koetter-Vardy decoding of error vector

We first consider a subproblem that will appear in the later sections of the paper.

Problem: Given the syndrome vector He = s and the distribution of the error P (E), where

H is the parity check matrix of a (n, k) Reed-Solomon code and H(E) < log2 q, try to recover
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Table 3.6 The standard deviation of the minimum required rate for Reed-Solomon codes
under sparse correlation models.

Dominant entries D Peak Factor Reed-Solomon St Dev

[0.15 0.6 0.15] 4 0.248071

[0.1 0.6 0.1] 6 0.262941

[0.1 0.7 0.1] 7 0.295008

[0.1 0.75 0.1] 7.5 0.285795

[0.1 0.79 0.1] 7.9 0.278398

[0.05 0.6 0.05] 12 0.269228

[0.05 0.7 0.05] 14 0.29273

[0.03 0.6 0.03] 20 0.288008

the error vector e.

The channel code rate k/n needs be large enough to recover the error E. The channel

capacity of a channel given by Y = X+E is log q−H(E) bits/symbol since I(X;Y ) ≤ H(Y )−

H(Y |X) = H(Y )−H(E) and the maximizing input distribution is P (X = γi) = 1/q, ∀γi ∈ Fq,

under which Y is also uniformly distributed. Thus, k/n ≤ 1 − H(E)/ log q. To apply KVA

(which outperforms the hard decision decoding), we assign the multiplicity matrix M based on

P (E), i.e., the reliability matrix Π = {πij = P (Ej = γi) = P (E = γi)} (Ej are i.i.d.). The rest

of the steps are exactly the same as we did earlier when we tried to recover x from Hx. Note

that this can be viewed as an approach to compress a single source E by using Reed-Solomon

codes.

3.5.2 Reed-Solomon codes for symmetric Slepian-Wolf coding

Suppose we have two vectors of length-n x and y at two source nodes. We view them

as polynomials of degree n − 1: fx(X ) and fy(X ), whose coefficients are (x1, x2, . . . , xn) and

(y1, y2, . . . yn). Evaluate fx(X ) and fy(X ) at every element in support sets D1,D2 ⊆ Fq re-

spectively, where |D1| = r1, |D2| = r2 and D1 ∩ D2 = {α1, α2, . . . , αr}, where α is the prim-
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Table 3.7 The standard deviation of the minimum required rate for multistage rate-adaptive
LDPC codes under sparse correlation models.
Dominant entries D Peak Factor Form LDPC6336 LDPC396

[0.15 0.6 0.15] 4 Diag 0.0669427 0.198618

[0.15 0.6 0.15] 4 Rand 0.0898387 0.209935

[0.1 0.6 0.1] 6 Diag 0.0697815 0.229635

[0.1 0.6 0.1] 6 Rand 0.0927795 0.245136

[0.1 0.7 0.1] 7 Diag 0.0752757 0.209446

[0.1 0.7 0.1] 7 Rand 0.0734244 0.213406

[0.1 0.75 0.1] 7.5 Diag 0.0781331 0.189537

[0.1 0.75 0.1] 7.5 Rand 0.0744257 0.182822

[0.1 0.79 0.1] 7.9 Diag 0.0771622 0.11408

[0.1 0.79 0.1] 7.9 Rand 0.0624548 0.111005

[0.05 0.6 0.05] 12 Diag 0.0807896 0.264187

[0.05 0.6 0.05] 12 Rand 0.105537 0.265584

[0.05 0.7 0.05] 14 Diag 0.095013 0.26106

[0.05 0.7 0.05] 14 Rand 0.0777197 0.249499

[0.03 0.6 0.03] 20 Diag 0.0891782 0.269959

[0.03 0.6 0.03] 20 Rand 0.116902 0.271629

itive element of Fq. Transmit these evaluations to the terminal. Note that this can also be

viewed as transmitting the syndromes HXx,HY y where HX = [HT
1 |HT

RS ]
T , HY = [HT

2 |HT
RS ]

T ,

and HRS is the parity check matrix of a (n, n − r) Reed-Solomon code and H1(H2) is deter-

mined by the evaluation points in set D1\D2(D2\D1). Using the evaluations of fx(X ), fy(X )

at points {α1, α2, . . . , αr}, the terminal finds the evaluations of fe(X ) , fx(X ) + fy(X ) at

{α1, α2, . . . , αr}. Note that this actually gives the syndrome s = HRSe from which e can be

recovered (cf. discussion above). Evaluate fe(X ) at every element in D1\D2 and since we know

the evaluations of fx(X ) at every element in D1\D2, we know the evaluation of fy(X ) at every

point in D1\D2, therefore we know the evaluations of fy(X ) at every point in D1 ∪ D2. Note

that |D1 ∪ D2| = r1 + r2 − r and as long as r1 + r2 − r ≥ n, we have n distinct evaluations of

the degree-(n−1) polynomial fy(X ), from which we can reconstruct fy(X ) by (single variable)

polynomial interpolation (which can also be viewed as recovering y from [HT
1 |HT

2 |HT
RS ]

Ty by
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Figure 3.4 The gap between the average minimum transmission rate and H(Y |X) for multi-
stage LDPC and Reed-Solomon codes under sparse correlation models.

matrix inversion) and fx(X ) can be found by fx(X ) = fy(X ) + fe(X ).

In this scheme, we need a sum rate of r1 + r2 ≥ n + r symbols. Note that r = n − k ≥

nH(E)/ log q. Therefore, the sum rate in terms of bits per symbol should satisfy R1 + R2 ≥

(n + r) log q/n ≥ log q + H(E). The rightmost term is the optimal sum rate when we use

capacity-achieving codes.

In practice, since Reed-Solomon codes are not capacity-achieving codes, there will be a gap

between the actual transmission rate and the conditional entropy. Since essentially we are using

a single algebraic code to recover the error vector e, the performance gap should be similar to

the asymmetric case. The natural rate-adaptivity is still supported in the symmetric case.
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3.6 Conclusion

In this work we have proposed practical SW codes using Reed-Solomon codes. Compared to

multistage LDPC codes, Reed-Solomon codes are easy to design, offer natural rate-adaptivity

and allow for relatively fast performance analysis. Simulations show that in classical Slepian-

Wolf coding scenario, Reed-Solomon codes perform better than both designs of multistage

LDPC codes under q-ary symmetric model and better than rate-adaptive LDPC codes under

the sparse correlation model with high peak factor. In a feedback scenario, the performance of

Reed-Solomon codes and multistage LDPC codes are similar under q-ary symmetric model but

LDPC codes outperform Reed-Solomon codes under sparse correlation model. An interesting

conclusion is that Reed-Solomon codes are much more resilient to inaccurate pdfs in both

scenarios.

For symmetric Slepian-Wolf coding, we discussed the case where the correlation model is

given by additive error, i.e., X = Y + E. The more interesting and challenging problem is

to apply algebraic approaches to more general correlation models, where the problem can not

be mapped to a simple channel decoding problem. The problem remains open and will be an

interesting future work.
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CHAPTER 4. Multiple-source Slepian-Wolf coding under a linear

equation correlation model

4.1 Related Work

4.1.1 Coding scheme for sum correlation

First, we describe the scheme for N sources in [19]. Choose an (n, k) code as the main

code with generator matrix G. Choose nonnegative integers m1, . . . ,mN and
∑N

i=1mi = k.

Partition G according to m1, . . . ,mN to G1, . . . , GN . Gi corresponds to a parity check matrix

Hi, i.e., GiH
T
i = 0. The ith source transmits Hixi = si, so the rate is Ri = n −mi. The sum

rate is Nn − k. At the decoder, for each i = 1, . . . , N , first find a vector ti in the coset with

syndrome si. Then, xi + ti is a codeword of code generated by Gi, i.e., xi + ti = aiGi for some

vector ai. It is also a codeword of the main code, i.e., xi + ti = [0∑i−1
j=1 mj

ai 0∑N
j=i+1 mj

]G,

where 0x is a zero vector of length x. Thus,
∑N

i=1(xi + ti) = [a1, . . . ,aN ]G. View
∑N

i=1 ti

as the channel output and
∑N

i=1 xi as the error, perform standard channel decoding, we get

the channel input [a1, . . . ,aN ]G, from which we can get a1, . . . ,aN . Finally, the ith source

xi = ti + aiGi.

It is stated in [19] that the proposed scheme there is optimal only when the correlation is only

given by the sum of all sources. The one-step channel decoding captures this correlation.The

following analysis expose this fact more clearly. This analysis is not given in the paper [19].

The main code needs to correct the error E =
∑N

i=0Xi. Thus, k/n ≤ 1−H(E). The sum
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rate of the scheme is
∑N

i=1Ri = Nn− k bits, or N − k/n bits/bit.

N∑
i=1

Ri

= N − k/n

= (N − 1) + 1− k/n

≥ H(X1) +H(X2|X1) +H(X3|X1, X2) + · · ·+H(XN−1|X1, . . . , XN−2)︸ ︷︷ ︸
(N−1)terms, each term less than 1

+ H(XN |X1, . . . , XN−1)

= H(X[N ])

Note that

H(XN , E|X1, . . . , XN−1) = H(XN |X1, . . . , XN−1, E)︸ ︷︷ ︸
=0

+H(E|X1, . . . , XN−1) (4.1)

= H(E|X1, . . . , XN−1, XN )︸ ︷︷ ︸
=0

+H(XN |X1, . . . , XN−1) (4.2)

Thus, H(XN |X1, . . . , XN−1) = H(E|X1, . . . , XN−1). This means if we want the cod-

ing scheme to be optimal, we want H(E) = H(E|X1, . . . , XN−1). We require that sources

X1, . . . , XN−1 are uniformly distributed and independent, and that E is independent of the

sources X1, . . . , XN−1. We shall show that this in fact means all subsets of sources of size

N − 1 need to be independent. Note that the requirements means XN =
∑N−1

i=1 Xi +E and E

is independent of
∑N−1

i=1 Xi.
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P (X2 = x2, X3 = x3, . . . , XN−1 = xN−1, XN = xN ) (4.3)

= P (X2 = x2, X3 = x3, . . . , XN−1 = xN−1,

N−1∑
i=1

Xi + E = xN ) (4.4)

= P (X2 = x2, X3 = x3, . . . , XN−1 = xN−1, X1 +E = xN −
N−1∑
i=2

xi) (4.5)

= P (X2 = x2, X3 = x3, . . . , XN−1 = xN−1)P (X1 + E = xN −
N−1∑
i=2

xi) (4.6)

= (

N−1∏
i=2

P (Xi = xi))P (X1 + E = xN −
N−1∑
i=2

xi) (4.7)

= (1/2)N (4.8)

.

The last equation follows fromX1+E is uniformly distributed. This is becauseX1B̃ernoulli(1/2),

EB̃ernoulli(p), P (X1+E = 0) = P (X1 = 0, E = 0)+P (X1 = 1, E = 1) = 1/2∗(1−p)+1/2∗p =

1/2. On the other hand, XN =
∑N−1

i=1 Xi + E is also uniformly distributed because
∑N−1

i=1 Xi

is uniformly distributed. Thus, P (X2 = x2, X3 = x3, . . . , XN = xN ) =
∏N

i=2 P (Xi = xi) and

the sources {X2, . . . , XN} are independent. Similarly we can prove all subsets of size N − 1 are

independent.

4.1.2 A rate-equivalent scheme

Next, we show that given any choices of R1, . . . , RN in the rate region of the previously

described scheme, we have an equivalent scheme that also works. Let m1, . . . ,mN such that∑N
i=1mi = k. We explain the scheme from the parity check matrix perspective and this will

motivate our proposed scheme. Choose an (n, k) code as the main code with parity check matrix

((n − k)-by-n) Hmain. We can simply choose the main code used in [19]. Stack k rows on to

the matrix Hmain such that we have a n-by-n full rank matrix H. Partition the newly added
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k rows according to m1, . . . ,mN to H1,H2, . . . , HN . Let [N ] = {1, 2, . . . , N} and [N ]\{i} =

{1, 2, . . . , i − 1, i + 1, . . . , N}. Note k =
∑N

i=1mi. Then, to construct the parity check matrix

Hi of the subcode for source i, we stack the matrices Hmain and Hj : j ∈ [N ]\{i} together. In

other words, Hi is obtained by removingH i fromH. Hi has n−k+
∑

j∈[L]\{i}mj = n−mi rows.

Transmit Hixi = si at each source so that Ri = n−mi. Note that for all i, Hi has Hmain part in

common. Denote the last (n− k) entries of si as s
(n−k)
i . Then

∑N
i=1 s

(n−k)
i = Hmain(

∑N
i=1 xi).

By standard channel decoding, we can recover
∑N

i=1 xi as long as the sum follows a Bernoulli(p)

distribution. Note that H i appears in every parity check matrix Hj : j ∈ [N ]\{i} but not in Hi.

From the syndromes Hjxj : j ∈ [N ]\{i}, we know H ixj for all j ∈ [L]\{i} because the latter is

a subvector of the former, which allows us to compute H ixi = H i(
∑N

j=1 xi) +
∑

j∈[N ]\{i}H
ixj

since we have already recovered
∑N

j=1 xi. Now, we know both H ixi and Hixi, putting them

together we know Hxi and since H is invertible, xi can be recovered. This equivalent scheme

reveals that in essence, only the correlation given by sum of all sources is exploited in the

coding scheme. Other than that, the sources are recovered by matrix inversion, even if there

are other form of correlations. Indeed, it can be shown that the scheme in [19] is optimal only

when all subsets of sources with size N − 1 and smaller are independent.

4.1.3 Rate adaptive Slepian-Wolf codes

A set of rate adaptive Slepian-Wolf codes is defined to be a set of L linear block codes whose

parity check matrices are given by {H1,H2, . . . , HL} with dimensions n−k1, n−k2, . . . , n−kL,

where k1 ≥ k2 . . . ≥ kL are such that Hi is a submatrix of Hi+1 for i ∈ [L]. Using such a set of

codes to perform Slepian-Wolf coding, the syndromes si = Hie are such that si is a portion of

si+1. If using a lower rate n− ki is not enough to recover e from si, by transmitting additional

kj−ki (j < i) symbols, we obtain sj and Hj has more powerful error correction capability than
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Hi. In an asymmetric Slepian-Wolf coding setting, the decoder requests additional syndrome

bits when the decoding fails and the rate is automatically adapted according to correlation

model. Good rate adaptive codes based on LDPC codes for binary sources were presented

in [46]. The basic idea is to first accumulate the syndrome bits and remove some of the

accumulated syndrome bits. Since the accumulation is linear operations and we can define a

new parity check matrix that incorporates the accumulation, the rate adaptive code designed

in this manner fits the above definition of rate adaptive code. In particular, suppose Ho
L is the

original parity check matrix of lowest code rate with dimension (n−kL)-by-n. The accumulation

can be viewed as a matrix AL times the syndrome Ho
Lx, where AL is such that AL(i, j) = 1 for

j = i, i + 1, . . . , n − kL, i = 1, 2, . . . , n − kL and other entries are zero. We could define a new

parity check matrix HL = ALH
o
L and view the accumulated syndromes as syndromes of the

new code. In order to have a low transmission rate, we remove some rows from AL, which is the

same as removing some accumulated syndrome bits. Suppose we want the code to adapt the

rates among {k1, k2, . . . , kL} and we know which bits to be removed for each code rate, we find

A1, A2, . . . , AL with number of rows n− k1, n− k2, . . . , n− kL and Hi = AiH
o
L is a submatrix

of Hi+1 = Ai+1H
o
L for i = 1, 2, . . . , L− 1. The simulations show that these codes perform very

well when there is a feedback channel from the decoder to the encoders that indicates whether

the decoding is successful1. If the decoding fails, the encoder sends more bits until the decoding

is successful. The average minimum required rates are very close to Slepian-Wolf bound [46].

On the other hand, our simulations show that if there is no feedback and the decoder attempts

decoding only once, the performance is not very good.

Our proposed scheme uses rate adaptive codes. We shall use syndrome bits that have been

1Successful decoding only indicates that the decoder is able to make a decision and does not imply that the
decision is correct. For instance, for an LDPC code, successful decoding would imply that the iterative decoding
procedure converged to a valid codeword.
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used to decode a less noisy error, together with additional syndrome bits, to decode a more

noisy error. In our simulations, we consider two scenarios, one is the classical Slepian-Wolf

scenario and in another scenario there is a feedback from the decoder to the encoder. We

shall see our proposed scheme works very close to Slepian-Wolf bound in the feedback scenario.

Even if the code performance is not very good under classical SWC scenario, our scheme still

outperforms the work of [19], where capacity-achieving codes are used, because we capture

more correlations.

4.2 A Motivating Example

Consider an example as follows. Suppose four binary sources X1, X2, X3, X4 are given as

follows.

X1 = Y1,

X2 = Y1 + E1,

X3 = Y1 + E2,

X4 = Y1 + E1 + E2 + E3,

where Y1 is uniformly distributed, E1, E2, E3 are independent and each has entropy less than

1. Thus, X2, X3 can be viewed as noisy version of X1 with different noise levels and their

correlation with X1 can be modeled as a BSC. X4 is a more noisy version of X1. An equivalent

characterization is

X1 +X2 = E1 (4.9)

X1 +X3 = E2 (4.10)

X1 +X2 +X3 +X4 = E3 (4.11)
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Let ki ≤ n(1 − H(Ei)) be such that the channel code with rate ki/n is able to correct

the channel error Ei. For a capacity-achieving code, ki should be close to n(1 −H(Ei)). The

scheme of [19] captures the last equation and the sum rate is Nn− k = 4n− k3 bits per block.

Suppose that k1 ≥ k2 ≥ k3 and we use a set of rate adaptive codes with rates k1/n, k2/n, k3/n

and parity check matrices H1,H2,H3 respectively. According to the definition, H1 is a sub-

matrix of H2, and H2 is a submatrix of H3. At the first stage, source 1 transmits H3x1,

which contains H1x1,H2x1, and its rate is n− k3. Sources 2, 3, 4 transmit H1x2,H2x3,H3x4

respectively and their rates are n − k1, n − k2, n − k3. The decoding of e1, e2, e3 proceeds as

follows.

Step 1. From (4.9), x1+x2 = e1, the terminal knows H1x1,H1x2, both of which have length

n− k1. It computes H1x1 +H1x2 = H1e1 and recovers e1.

Step 2. From (4.10), x1 + x3 = e2, the terminal knows H2x1 and H2x3, and recovers e2.

Step 3. The terminal adds both (4.9) & (4.10) to (4.11) and obtains

x1 + x4 = e1 + e2 + e3. (4.12)

The terminal knows the syndromes H3x1,H3x4 from the sources, and computes H3e1,H3e2

since e1 and e2 are both known from the first two steps. Adding these together we get H3e3,

then we can recover e3 by syndrome decoding. If we do not add both (4.9) & (4.10) to (4.11), we

need the rate of all the sources to be n−k3 in order to obtain H3e3 in the last equation, which

is unnecessary for recovering the errors e1, e2, e3. In general, given a linear equation correlation

model, proper transformation needs to be performed to get better rate performance. We shall

discuss the systematic way to do this in Section 4.3.

At the second stage, we need to transmit some more encodings such that all the sources

can be recovered. Note that if we can recover x1 we can recover all other sources since we have
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known e1, e2, e3. We can transmit a linear combination of x1: H ′x1 (of length k3) from the

source X1 and such that [H ′T ,HT
3 ] is invertible. Alternatively, we can partition the rows of H ′

into H ′
1,H

′
2,H

′
3,H

′
4 and source Xi transmit H ′

ixi, the rates are a1, a2, a3, a4 respectively and

such that they sum to k3. H ′
ix1, i = 2, 3, 4 can be found as follows. H ′

2x1 = H ′
2x2 + H ′

2e1,

H ′
3x1 = H ′

3x3 +H ′
3e2,H

′
4x1 = H ′

4x4 +H ′
4e1 +H ′

4e2 +H ′
4e3. The last equation is from (4.12).

Thus, H ′x1 can be obtained from the encodings of other sources. This gives us the rate

flexibility since we do not have to transmit x1 at rate n. The rate of each source in this scheme

is

R1 = n− k3 + a1,

R2 = n− k1 + a2,

R3 = n− k2 + a3,

R4 = n− k3 + a4,

a1 + a2 + a3 + a4 = k3,

ai ≥ 0, i = 1, 2, 3, 4.

In other words, the rate region of this scheme in terms of bits per block can be expressed

by 

R1, R4 ≥ n− k3,

R2 ≥ n− k1,

R3 ≥ n− k2,

R1 +R2 +R3 +R4 ≥ 4n− k1 − k2 − k3


(4.13)

The sum rate of the proposed approach is 4n− k1 − k2 − k3 bits per block.

Remark: In this example, by applying the scheme in [19] three times to each equation

and use previously decoded sources as side information, one can also achieve a sum rate of
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4n− k1 − k2 − k3. Specifically, apply the scheme in [19] to (4.9), x1,x2 can be recovered using

2n − k1 symbols. Then, x1 is used as side information and from (4.10), x3 can be recovered

using n−k2 additional symbols. Then, using x1,x2,x3 as side information, x4 can be recovered

using n− k3 additional symbols from (4.11).

But consider the following example: X1+X2+X4 = E1, X2+X3+X4 = E2, X1+X3+X4 =

E3. If we apply the scheme in [19] to the first equation, we need 3n − k1 symbols to recover

x1,x2,x4. Then, from the second equation, we need n − k2 additional symbols to recover x3.

The sum rate is 4n− k1 − k2. Considering starting with different equations, the best sum rate

is 4n−max{k1+ k2, k1+ k3, k2+ k3}. But we shall see below our proposed scheme can achieve

a sum rate of 4n− k1 − k2 − k3.

4.3 Distributed source coding for linear correlations

In this section, we propose a practical coding scheme for the linear correlation model con-

sidered above. In particular, we design appropriate decoding schedules and transformation of

the system of linear equations such that we can achieve near optimal sum rate. In practice, if

we use moderate block length codes, there will be a gap between the joint entropy and the sum

transmission rate. We shall show this in the Section 4.4. Denote the index set {1, 2, . . . , L} by

[L] for some integer L. Let Sl, l ∈ [L] be subsets of the sources. The correlation is given by a

set of L linear equations
∑

i∈Sl
Xi = El, l ∈ [L] that are assumed to be linearly independent.

Ei’s are assumed to be statistically independent. Let ki/n be the channel code rate that needed

to correct error Ei.

Our scheme works as follows. Find a set of L linearly independent columns in the coefficient

matrix of the system of equations and denote the index set by A. This can always be done

because the equations are linearly independent. Denote the index set [N ]\A by B. Note that
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A is also the index set for the sources that corresponding to the L columns indexed by A.

Similarly, B is also an index set for the sources. Without loss of generality, assume that the

equations are ordered such that k1 ≥ k2 ≥ . . . ≥ kL and we will keep this order in the whole

decoding procedure. It is important to keep the equations in this order. The scheduling of

the decoding procedure based on such an ordered form gives the best rate performance. As

we have seen before, transforming the system of linear equations properly is another necessary

approach to get the best rate performance. We present a decoding scheme such that we can

achieve a sum rate of Nn−
∑L

l=1 kl bits per block.

At the first stage, we recover the errors e1, e2, . . . , eL. The rate at this step for the ith

source is denoted by Pi. We first discuss the assignments of the rates Pi.

4.3.0.1 Rate allocation

As we will see later, this step also provides a proper decoding procedure (scheduling) for

the first stage (recovering the errors).

• For sources in set B, assign Pi = n−minl∈[L] kl = n− kL,∀i ∈ B.

• The assignment of rates Pi, i ∈ A is described as follows. Note that the set A∩Sl indicates

the set of sources in A that participate in the lth equation. Let J denote an index set.

Let u be the iteration index. At the beginning of each iteration, J is the set of sources

in A that has been assigned rate Pi.

Initialization. J = ∅; Pi = 0,∀i ∈ A; u = 1.

1. Pick a source ju ∈ A ∩ Su, J ← J ∪ {ju}. Assign Pju = n− ku.

2. Add the uth equation to the lth equation for every l such that l > u and ju ∈ A∩Sl,

i.e., the equations in which the source Xju appears. Replace the lth equation by this
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new equation and update Sl accordingly.

3. u← u+ 1, if u < L, go to 1), otherwise, the algorithm terminates.

The idea is similar to Gaussian elimination but the main difference is that we do not switch

the order of the equations. Gaussian elimination returns a matrix in row echelon form, while

this algorithm does not.

Claim: The algorithm assigns rates for each source and the rate allocation is such that Pi ≥ n−

kl,∀i ∈ Sl for l = 1, 2, . . . , L, where Sl is induced by the linear equations after the transformation

performed in the algorithm.

Proof: It is easy to see for ∀i ∈ B, Pi ≥ n−kl, ∀l ∈ [L]. For the allocation of Pi,∀i ∈ A, at each

step u, we eliminate the source Xju in the equations u+1, . . . , L. Thus, for each 1 ≤ u ≤ L, at

the beginning of step u, J ∩A∩ Su = ∅. Therefore, at step u, the sources that have already in

J will not be picked again. And each step we can always find ju ∈ A∩Su because the columns

indexed by A have full rank, an all zero row will not appear in the L-by-L submatrix. At the

end of the above procedure, J = A and the rate assignment is Pju = n−ku,∀u ∈ [L]. Note that

because we keep the equations in an order such that k1 ≥ k2 ≥, . . . ,≥ kL, Pj1 ≤ Pj2 ≤ . . . ≤ PjL .

Note that for each equation l, A ∩ Sl ∩ {j1, j2, . . . , jl−1} = ∅, i.e., the sources that have been

assigned a rate (lower than n − kl) do not appear in equation l, and the sources in equation

l other than jl will be assign a rate higher than n − kl in later iterations. Thus, we conclude

that for sources in A ∩ Sl,Pi ≥ n− kl,∀i ∈ A ∩ Sl.

The sum rate of Pi’s is

∑
i∈B

Pi +
∑
i∈A

Pi = (N − L)(n− kL) + Ln−
L∑
l=1

kl = Nn− (N − L)kL −
L∑
l=1

kl. (4.14)

The choice of ju at each step is not unique so the rate allocation is not unique.
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Example. Consider the example in the Remark of the previous section. The correlation is

given by 
1 1 0 1

0 1 1 1

1 0 1 1





X1

X2

X3

X4


=


E1

E2

E3

 . (4.15)

S1 = {1, 2, 4}, S2 = {2, 3, 4}, S3 = {1, 3, 4}. Choose A = {2, 3, 4} and B = {1}. Thus,

P1 = n− k3. We proceed the iteration as follows to find our the rates for sources in A.

1. Iteration 1. Pick j1 = 2, J = {2} and P2 = n− k1. Add the first equation to the second

equation so that the system of equations becomes


1 1 0 1

1 0 1 0

1 0 1 1





X1

X2

X3

X4


=


E1

E2 + E1

E3

 . (4.16)

And A ∩ S2 = {3}.

2. Iteration 2. Pick j2 = 3, J = {2, 3} and P3 = n − k2. Add the second equation to the

third one, the system of equations becomes


1 1 0 1

1 0 1 0

0 0 0 1





X1

X2

X3

X4


=


E1

E2 + E1

E3 + E1 + E2

 . (4.17)

And A ∩ S3 = {4}.

3. Iteration 3. Pick j3 = 4, J = {2, 3, 4} and P4 = n− k3.



www.manaraa.com

50

4.3.0.2 Code construction and decoding

Choose a set of rate adaptive code that can adapt the rates among {k1/n, k2/n, . . . , kL/n}.

The parity check matrices are H1,H2, . . . , HL and Hi is a submatrix of Hi+1 for i ∈ [L − 1].

For Xi : i ∈ B, transmit HLxi. For each Xi : i ∈ A, transmit Hjxi if Pi = n− kj . We recover

errors according to the ascending order: e1, e2, . . . , eL from equation 1 to L, which are updated

during the rate allocation algorithm. Note that Pi ≥ n − kl for all i ∈ Sl. This means the

decoder can obtain Hlxi,∀i ∈ Sl from the syndromes it receives. For the sources such that

Pi > n − kl, Hlxi is a portion of the received syndrome Hl′xi for some l′ > l. Note that the

right hand side of the equation may become el plus some eu’s for u < l. But those additional

error terms are recovered earlier and we can compute Hleu for those u’s. The effective error is

still el and we can compute Hlel and recover el.

Example (Continued.) In the example above, suppose the parity check matrices of the rate

adaptive codes are {H1,H2,H3}. Source X1 transmits H3x1, X2 transmits H1x2, X3 transmits

H2x3 and X4 transmits H3x4 so that their rates are n− k3, n− k1, n− k2, n− k3 respectively.

We look at the equations after the rate allocation, i.e., equation (4.17). Start with the first

equation. Note that H1x1 is a subvector of H3x1 and H1x4 is a subvector of H3x4. So the

decoder knows H1(x1 + x2 + x4) = H1e1 and it is able to recover e1. In the second equation,

note that H2x1 is a subvector of H3x1 and X3 transmits H2x3, the decoder knows H2(x1+x3)

and H2e1 since e1 was recovered. Thus, it finds H2e2 and recovers e2. In the third equation,

note that X4 transmits H3x4, and the decoder knows H3(e1 + e2) so it knows H3e3 and can

recover e3. Therefore, e1, e2, e3 can be recovered.

At the second stage, we transmit some more encodings such that all sources can be recovered.

The rate of additional encodings at the second stage that are needed to recover all the sources

is denoted by Qi. The transmission rate for source i is Ri = Pi+Qi. If xi,∀i ∈ B are recovered,



www.manaraa.com

51

xi,∀i ∈ A can be recovered by matrix inversion. The simplest way is to transmit kL additional

encodings H ′xi for each xi,∀i ∈ B and such that [H ′THT
L ] has full rank. This is equivalent

to transmit Xi, i ∈ B uncoded, Qi = kL,∀i ∈ B,Qi = 0,∀i ∈ A and recall the expression of∑
i∈[N ] Pi (4.14), the sum rate of our scheme in terms of bits per block is

∑
i∈[N ]

Ri = Nn−
L∑
l=1

kl. (4.18)

We could also partition the rows of H ′ and transmit the encodings of other sources such

that H ′xi, i ∈ B can be recovered based on the errors e’s that we have found. By doing this,

the rates of Xi, i ∈ B do not have to be n. This is similar to the scheme in Section 4.1.2. To

obtain a representation of xi, H
′xi, one can obtain H ′xj for other sources Xj that participate

in the same equation with Xi. Since the right hand side of each equation is recovered at the first

stage, H ′xi can be computed. In Section 4.1.2, only one equation is used, while here we have

L equations. The exact rate region depends on the form of the system of equations. Note that

the choice of A,B may not be unique, different choices of A,B give different rate assignments.

The optimal sum rate is the joint entropy H(X[N ]) = H(XB) + H(XA|XB) = H(XB) +

H(E1, E2, . . . , EL|XB). If there exists a choice of A and B such that the columns indexed by

A are independent, the sources in the set B are uniformly distributed, and the sources in the

set {XB, E1, . . . , EL} are statistically independent, then H(XB) = (N − L),

H(E1, E2, . . . , EL|XB) =
L∑
i=1

H(Ei) ≈
L∑
i=1

(1− ki/n).

Thus, if the above assumptions hold and the channel code is capacity achieving, then the sum

rate of the proposed scheme achieves the optimum. The practical performance of our scheme

is shown in Section 4.4.

If the random variables Ei’s are dependent, our scheme will still work. One can use pre-

viously decoded ei’s to help decode ej , j > i. The input probability to the LDPC decoder
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will have the form p(Ej |E[j−1]). However, the correlations among Ei’s could be arbitrary, the

performance of the LDPC codes cannot be guaranteed to be very good. Note that one special

case of our scheme is that when L = N , i.e., when the correlation is given by a full rank system

of linear equations, and {E1, E2, . . . , EL} are independent, then our scheme achieves optimal

sum rate.

4.4 Simulation results

We present Monte Carlo simulation results in this section. Note that we only need to find

out the rate for error recovery stage, i.e., recovering e vectors, by simulation. This stage uses

error control codes and their performance should be evaluated by simulation. The recovery

of the actual sources xi is done by matrix inversion and vector addition operations and these

steps are guaranteed to be correct as long as e’s are recovered correctly. The rate-adaptive

codes designed in [46] are used in our simulations. The irregular LDPC code has length 6336

and degree 2 to 21. We consider two scenarios, classical Slepian-Wolf coding scenario and the

feedback scenario.

In the classical SWC scenario, we shall find the lowest transmission rate, i.e., the largest ki’s,

that results near- error-free recovery, i.e., frame error rate < 10−3. We say one frame is in error

if one of the frames ei, i = 1, . . . , L is not decoded correctly. In order to obtain FER < 10−3

for the whole coding scheme, we roughly need the individual FER for each Ei to be 10−3/L,

where L is the number of equations. In the feedback scenario, when decoding a error sequence,

if the decoding attempt fails, the decoder will request from all sources that participate in the

equation (after transformation) to send more syndrome bits until the decoding is successful.

The simulation results are presented by the average minimum required transmission rate for

each source and the average minimum required sum rate for recovering all error sequences.
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We consider the example in Section 4.2. Two configurations of probability distribution are

used and the results are presented in Table 4.2 and Table 4.3. The gaps to joint entropy are

compared in Tab. 4.1.

Table 4.1 The comparison of the gaps between the sum transmission rate and the joint
entropy.

Configuration 1 Configuration 2

Proposed scheme: classical SWC scenario 0.89 0.84

Proposed scheme: feedback scenario 0.27 0.22

Previous scheme (theoretical) 0.97 1.39

Previous scheme (actual classical SWC) 1.18 1.58

Clearly, the rate-adaptive codes perform better under feedback scenario. In Tab. 4.1,

the theoretical gap means the gap between the transmission rate and the joint entropy when

a capacity-achieving code is used, i.e., ki/n = 1 − H(Ei). For our proposed scheme, if a

capacity-achieving code is used, the theoretical gap will be zero. The results presented for the

proposed scheme is the actual performance of the rate-adaptive codes, which is not capacity-

achieving especially under classical Slepian-Wolf coding scenario. For the scheme in [19], when

a capacity-achieving code is used, the sum rate will be 4 − 1 + H(E3). Note that in the

classical SWC scenario, even if a capacity-achieving code is used in the scheme of [19] and the

rate adaptive codes used in our proposed scheme is not capacity-achieving, our scheme still

performs better because we are able to capture more correlations. When capacity-approaching

codes are used in the scheme of [19], which is marked as actual classical SWC in the table, our

scheme demonstrates larger gain. Under the feedback scenario, the performance will be better

than classical SWC but worse than the theoretical performance.

As another example, a full rank system of five equations that contains five sources is shown
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below. 

1 1 1 0 1

0 1 1 0 0

0 0 1 1 0

0 1 1 0 1

0 1 0 0 1


The form after transformation is as follows.

1 1 1 0 1

0 1 1 0 0

0 0 1 1 0

0 0 0 0 1

0 0 0 1 0


In this example, j1 = 1, j2 = 2, j3 = 3, j4 = 5, j5 = 4 and P1 = n − k1, P2 = n − k2, P3 =

n− k3, P4 = n− k5, P5 = n− k4. The corresponding simulation results are presented in Table

4.4.

Table 4.2 The Example in Section 4.2, configuration 1
i p(Ei = 1) H(Ei) Tx Rate 1− ki/n (classical SWC) Tx Rate 1− ki/n (feedback)

1 0.11 0.50 0.77 0.59

2 0.12 0.53 0.82 0.62

3 0.13 0.56 0.89 0.65

Total actual tx rate (classical SWC):4− (k1 + k2 + k3)/n = 3.48

Average total tx rate (feedback):2.86

Joint Entropy: 2.59
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Table 4.3 The Example in Section 4.2, configuration 2
i p(Ei = 1) H(Ei) Tx Rate (classical SWC) 1− ki/n Tx Rate (feedback) 1− ki/n

1 0.05 0.29 0.56 0.34

2 0.06 0.33 0.61 0.39

3 0.15 0.61 0.89 0.71

Total tx rate (classical SWC): 4− (k1 + k2 + k3)/n = 3.06

Average total tx rate (feedback):2.44

Joint Entropy: 2.22

Table 4.4 The configuration and simulation results for five correlated sources.
i p(Ei = 1) H(Ei) Tx Rate (classical SWC) 1− ki/n Tx Rate (feedback) 1− ki/n

1 0.05 0.29 0.53 0.35

2 0.06 0.33 0.74 0.38

3 0.07 0.37 0.73 0.42

4 0.08 0.40 0.89 0.47

5 0.09 0.44 0.80 0.52

Total tx rate (classical SWC): 3.69

Total tx rate (feedback):2.15

Joint Entropy: 1.83

4.5 Conclusion

The distributed compression of more than two correlated sources is investigated in this

paper. Under a correlation model given by a system of linear equations, we propose a trans-

formation of the correlation model and a way to find the proper decoding schedule such that

optimal sum rate can be achieved under a weaker assumption than [19]. More correlations

are captured by our scheme and the simulation results demonstrate the better compression

efficiency of our scheme.
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CHAPTER 5. List decoding for syndrome decoding with application in

network coding vector compression

We investigate the problem of compression of sparse vector over finite fields in this chapter.

As mentioned in Section 2.1, we can use the parity check matrix of a linear block code to

perform compression, i.e., computing the syndrome s = eHT . The traditional unique decoding

algorithms, such as Berkelamp-Massey algorithm allows the number of nonzero entries in e

to be ⌊n−k
2 ⌋ if the length of s is n − k. In this chapter, we shall propose a novel problem

transformation so that list decoding algorithms, which have better error correction capability,

can be used to improve the compression efficiency, i.e., allow more number of nonzero entries

in e if the length of s is fixed.

5.1 List decoding for syndrome decoding

In most existing list decoding algorithms, the algorithm is proposed to solve Problem 1.

Problem 1. Given a received word r = c + e, find the list of all codewords c’s within

Hamming distance t > t0 of r.

Most of them do not use the notion of syndrome. We hope to adapt list decoding algorithms

to syndrome decoding problem. The list decoding version of syndrome decoding problem can

be stated as follows.

Problem 2. Find the list of all possible error pattern e’s such that eHT = s and wt(e) ≤ t,
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where t > t0.

We propose a problem transformation such that all list decoding algorithms for problem 1

can be used to solve problem 2. Given s = eHT , we can find an arbitrary r such that s = rHT ,

then use this r as input to problem 1 and get the list of c’s as an output, then e = r+ c form

the list of e’s. Such r can be chosen easily. Recall that the parity check matrix H of a (n, k)

code has rank (n − k) and there exist (n − k) columns in H that are linearly independent.

Let the elements of r that correspond to these columns be unknowns and other k elements be

zero. Note if an RS code is used, we can choose any k elements in r to be zero. The system

of equations s = rHT has (n− k) unknowns and (n− k) linearly independent equations, from

which r can be determined. Next, we prove that the above transformation solves problem 2

correctly.

Suppose the resultant list of problem 2 is a set L1 and the list obtained by using our

transformation is a set L2. We need to show L1 = L2. First, if e ∈ L2, since e = r+c for some

c ∈ CRS and c and r differ at most t positions, wt(e) ≤ t and eHT = cHT+rHT = 0+rHT = s,

then e ∈ L1. Second, if e ∈ L1, there exists an c = r + e such that cHT = rHT + eHT = 0

and since wt(e) ≤ t, ∆(r, c) ≤ t (∆(·) denotes Hamming distance), this means c is a codeword

within Hamming distance t of r, then c is on the list of the output of problem 1. Thus e ∈ L2.

This transformation is useful in various problems, including network coding vector compres-

sion problem. In fact, this transformation can be viewed as a special case of the transformation

proposed in Section 3.1.

Our proposed transformation allows us to apply any list decoding algorithm to syndrome

decoding. However, although very few, it is worth to mention that there is one list decoding

algorithm for Reed-Solomon codes that uses the notion of syndrome [47]. If one uses this

algorithm to perform syndrome decoding, the transformation is not needed. This algorithm



www.manaraa.com

58

has the same error correction capability as the Guruswami-Sudan algorithm.

5.2 Network coding vector compression problem

As mentioned in Section 2.3, random linear network coding is a distributed solution to

achieve max-flow min-cut bound. The coding operations at the intermediate nodes of the

network impose a linear transform on the source packets and the transfer matrix needs to be

known by the terminals. The overhead of the scheme in [42] is negligible when the packet

length is large and the number of sources is relatively small. There are situations in which

the packet overhead can be significant. As noted in [22], in sensor networks, the number of

sources is large and current sensor technology does not allow transmission and reception of

very large packets. However, in many of these applications, the network topology is such that

the received packets at a terminal only consist of combinations of a small or moderate number

of sources. In addition, the random network coding protocol can possibly be appropriately

modified to enforce the constraint that a received packet contains combinations of only a few

sources. This implies that it may be possible to “compress” the header size and reduce the

overhead. The idea of compressing coding vectors was first proposed in [22], where a strategy

using parity-check matrices of error control codes was used. Under that scheme, the overhead

of each packet has length 2m if the maximum number of packets being combined in the packet

is m.

Suppose the total number of sources is n. As mentioned in [22], the restriction on the

number of combined packets introduces n−m zeros in each row of the transfer matrix, which

may affect the invertibility of the matrix. The network topology in general will make the

distribution of zeros non-uniform and this makes the chance of losing rank becomes larger.

Therefore, the value of m can not be too small.
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5.3 Related Work

Let Fq denote a finite field with size q, where q is a power of two. Consider a network with

n sources, not necessarily collocated. The ith source transmits a length-N packet pi ∈ FN
q .

The packet contains two parts: pi = [pH
i |pM

i ], where pH
i ∈ F h

q is the header and pM
i ∈ FN−h

q

is the actual message. The ith packet received by a terminal is ri = [rHi |rMi ], where rHi denotes

the header and rMi denotes the coded message. In [42], the header, pH
i is designed to be the

ith row ii of an n-by-n identity matrix. Thus, under random network coding, rHi contains the

overall transformation from the sources to the terminal for the coded message rMi . The length

of the header h = n. Denote the vector of transformation coefficients by qi.

In general, the entries of qi could be all non-zero since all sources could be combined.

Under the assumption that at most m sources are combined, qi contains at most m non-

zero entries, which leads us to an error control coding based compression [22]. In the error-

correction based compression scheme, the header of the packet pi injected in the network

is chosen to be pH
i = iiH

T . After random linear coding, the ith received packet contains

the header rHi = qiH
T . Note that the network coding vector qi is a length-n vector with

wt(qi) ≤ m and rHi is available at the terminal. Thus, the problem of recovering qi is equivalent

to error correction as mentioned before. Then the n headers can be stacked row by row, forming

the n-by-n transfer matrix. To get a high compression rate, we want k to be as large as possible

while the minimum distance is d and the code length is n. From the Singleton bound [20],

k ≤ n− d+1 = n− 2m and the well known RS codes achieve this with equality. The overhead

of the error-correction based scheme is h = n− k and the maximum number of sources allowed

to be combined in one packet is m ≤ ⌊h/2⌋.
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5.4 Erasure decoding based compression scheme

In channel coding, an erasure is defined to be an error whose location is known by the

decoder. For a linear block code with minimum distance d, it can correct up to d− 1 erasures.

For BCH codes and RS codes, syndrome-based decoding and the BMA still work after some

minor modifications [20]. In the network coding vector compression scenario, if we know the

locations of non-zero elements in qi, we can allow m to be as large as d− 1 ≤ n− k. Note that

as long as we know which source packets are combined in the packet of interest, we know the

locations of the non-zero elements.

Proposed Solution. - We add a bit array of length-n to the header pH
i and call it ID segment.

At the jth source, only the jth position is set to 1 and others are 0. At every intermediate node,

when several incoming packets are combined to form a packet for an outgoing edge, the ID

segment of the outgoing packet is the bit-wise OR of the ID segments of the incoming packets.

pH
i also includes iiH

T (of length n− k) as before. This protocol is very easy to implement and

every packet in the network knows exactly which source packets are combined in it. The jth

element of qi is non-zero if and only if the jth bit in the ID segment of rHi is 1. As pointed out in

the introduction, if we want to limit the number of source packets being combined by network

protocol, this information is important for the intermediate nodes. The terminal receives the

“syndrome” qiH
T and knows the locations of the “errors”. By erasure decoding, it can recover

qi as long as wt(qi) ≤ m = n− k.

The length of the ID segment in terms of symbols is n/ log q. The total overhead is n −

k + n/ log q. If m is fixed, the overhead for the scheme in [22] is 2m and the overhead for our

erasure decoding scheme is m+ n/ log q. Thus, if m is not too small, our proposed scheme has

less overhead.
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Example 1. Suppose n = 50, q = 28,m = 15. Under error decoding scheme, a (50, 20) RS

code is required and the overhead is 30 bytes. Under erasure decoding scheme, a (50, 35) RS

code is required and the overhead is 22 bytes, a saving of 26%. According to the current ZigBee

standard [48], the packet size is 128 bytes.

Example 2. Suppose n = 255, q = 28,m = 150. No code has minimum distance 301 with

code length 255. Under error decoding the network coding vector cannot be compressed and

the overhead h = n = 255. Under erasure decoding scheme, a (255, 105) RS code can be used

and h = 182.

5.5 List decoding based compression scheme

In this section, we show that the overhead of the strategy based on error decoding (such

as [22]) can be reduced by using list decoding at the terminal. It does not require the decoder

to know the error locations so we need not add the ID segment in the header. Furthermore,

the intermediate nodes simply perform linear combination on the header, i.e., it is oblivious

to the fact the network coding vectors are compressed. In order to apply list decoding to

our problem, we propose a packet header for the ith source packet that consists of iiH
T and

some side information. Note that at the terminal, we obtain the syndrome s = eHT = qiH
T .

Therefore, list decoding can be applied in the way introduced in Section 5.1.

Note that by list decoding we have only found a list of possible error patterns. In practice we

need to find the unique error pattern as the decoded network coding vector. The small amount

of side information included in the header is useful here. The side information generation

problem was solved in [49, Theorem 2]. It is a hash function based algorithm to select a

message in a candidate set and works no matter we are facing problem 1 or problem 2. Note

that in our compression problem, the message space is all possible network coding vectors and
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the size is qn. The side information at the terminal should contain [49, Lemma 1] (i) qi · gr,

where qi is the actual “message” (network coding vector), gr is a randomly chosen column of

the generator matrix of a low rate RS code (which is different from the one used to generate

the syndrome) and · denotes inner product, and (ii) the random number r. Denote the list of

candidates to be {q1
i , . . . ,q

L
i }. The terminal knows the RS code a priori and computes qj

i · gr

for every j and finds j∗ such that qj∗
i · gr = qi · gr . Since the actual qi is in the list, such a j∗

exists. It was shown in [49, Theorem 2] that as long as O(log n)+O(logL)+O(log(1/Pf )) bits

of side information are provided, the probability that j∗ is not unique is less than Pf . The basic

idea behind this is that for two codewords of a RS code with very large minimum distance, the

probability that the symbols at a random chosen position r are equal is very small. The list

size L is polynomial with n. Thus, the amount of side information needed is O(log n) and Pf

is the probability of failure to find a unique output. In order to obtain the side information

at the terminal, we include ii · gr in the header of the ith source packets and the intermediate

nodes perform linear combination on it, so that the terminal receives qi · gr. We can let the

session ID to be the random number r and available to the sources and terminals so that r

does not need to be transmitted over the network.

Let us elaborate on the operations performed at each node in more detail. Note that the

element ii ·gr can come from a field that is larger than size q (the field on which network coding

is performed) because gr is a column of a very low rate Reed-Solomon code. We can choose

the field where the side information is defined to be of size q′ = qt, for some integer t, i.e., an

extension field of Fq. At each intermediate node, we should perform multiplication operations

between two elements from Fq (network coding coefficient) and Fq′ (side information symbol)

respectively and addition operations between two elements from Fq′ when updating the side

information. However, we shall see that in fact we only need to perform field operations on Fq.



www.manaraa.com

63

Suppose the network coding coefficient is u ∈ Fq and the side information symbol is v ∈ Fq′ .

Note that u is also an element on Fq′ . The elements on Fq′ can be represented as polynomials

with degree t − 1 on Fq, or simply a length t vector on Fq. Thus, u can be represented as

u + 0X + 0X 2 + · · · 0X t−1 and v can be represented as v0 + v1X + v2X 2 + · · · vt−1X t−1. The

multiplication operation defined over Fq′ is to multiply these two polynomials and then modulo

a degree t irreducible polynomial. But note that in our case, we only need to multiply u

with the vector [v0, v1, . . . , vt−1] without taking the modulo since u is essentially a zero degree

polynomial. The addition between two elements from Fq′ is the component-wise addition of the

elements from Fq. Thus, although the side information symbol may come from an extension

field of Fq, at the intermediate nodes, they only need to operate on Fq by viewing the side

information symbol as a vector from Fq. In other words, the intermediate nodes are oblivious

to the fact the network coding vectors are compressed.

The list decoding based scheme incurs an overhead of length m+O(log n)/ log q and allow

the number of source packets being combined to be m. It has smaller overhead size than

erasure decoding based scheme. However, as mentioned before, in order to approach the list

decoding capacity, the field size needs to be large and the decoding algorithm becomes more

complicated. If we use ordinary RS codes and the efficient decoding algorithms that corrects

up to n −
√
nk errors to compress network coding vector, the overhead length will be 2m −

m2/n + O(log n)/ log q. Usually this will be less than the overhead of error decoding based

scheme but greater than erasure decoding based scheme.

Example 3. Suppose n = 255, q = 28,m = 86. We use a (255, 112) RS code. The syndrome

length is 143 and the side information length is ⌈30/8⌉ for Pf = 0.0001, 1, so h = 147. h equals

172 or 118 for error or erasure decoding respectively.

1We carefully derived the exact amount of side information in our scenario and the upper bound on list size
L was given in [47].
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5.6 Conclusion

We proposed erasure decoding based and list decoding based approaches to improve the

compression of network coding vectors. Table 5.1 compares the overheads of the various

schemes. For moderate or large value of m, that may be necessary to support the multi-

cast rate, both schemes have less overhead than the error decoding based scheme. Our in-

vestigation reveals that the list decoding based scheme has a lower overhead with respect to

the erasure coding based scheme, when capacity achieving codes are used. However, from a

practical perspective, the erasure coding scheme offers the best tradeoff between overhead and

implementation complexity.

Table 5.1 Comparison of three schemes for the same m.
Header format Header length

Error Syndrome 2m

Erasure
Syndrome m+ n/ log q

+ ID segment

List
Syndrome m+O(log n)/ log q

+ side information or 2m−m2/n+O(log n)/ log q
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CHAPTER 6. Network error protection using algebraic coding approach

6.1 Network model and encoding protocol

6.1.1 Network model

As mentioned in Chapter 1, in this dissertation we attempt to simultaneously protect mul-

tiple unicast connections using network coding by transmitting redundant information over

protection paths. Note that even the error-free multiple unicast problem under network coding

is not completely understood given the current state of the art [33]. Therefore we consider the

multiple unicast problem under certain restrictions on the underlying topology. In our work

we consider each individual unicast to be operating over a single primary path. Moreover, we

assume that protection paths passing through the end nodes of each unicast connection have

been provisioned (see Figure 6.1 for an example). The primary and protection paths can be

provisioned optimally by integer linear programming (ILP). Although the ILP has high (poten-

tially exponential) computational complexity, it only needs to run once before the transmission

of data and there are powerful ILP solvers, e.g. CPLEX, to solve ILP problems.

Suppose that 2n nodes in the network establish n bidirectional unicast connections with

the same capacity. These nodes are partitioned into two disjoint sets S and T such that each

node in S connects to one node in T . The n connections are labeled by numbers 1, . . . , n and

the nodes participating in the ith connection are given index i, i.e., Si and Ti. Each connection

contains one bidirectional primary path Si−Ti. Si and Ti send data units they want to transmit
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S
1

T
1
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2
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2
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3
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3

S(k)

T(k)

Figure 6.1 Three primary paths Si − Ti, i = 1, . . . , 3 being protected by a single pro-
tection path P(k). The clockwise direction is S(k) and the counter clock-
wise direction is T(k). σ(S2) = T3, τ−1(T3) = T2. The encoded data
units on S(k) are labeled inside the protection path and the encoded data
units on T(k) are labeled outside the protection path. At T3, the data unit
P (k) = α1d1 + β1û1 + α2d2 + β2û2 + α1d̂1 + β1u1 + α3d3 + β3û3 + α2d̂2 + β2u2, if
there is no error, P (k) = α3d3 + β3u3.

onto the primary path. The data unit sent from Si to Ti (from Ti to Si) on the primary path

is denoted by di (ui). The data unit received on the primary path by Ti (Si) is denoted by d̂i

(ûi).

A protection path P is a bidirectional path going through all 2n end nodes of the n con-

nections. It has the same capacity as the primary paths and consists of two unidirectional

paths S and T in opposite directions. M protection paths are used and we assume that there

are enough resources in the network so that these protection paths can always be found and

provisioned. In this paper we mainly focus on the case where all protection paths pass through

all 2n end nodes of the connections, see Fig. 6.1 for an example, and they are denoted by

P(1), . . . ,P(M). The order in which the protection paths pass through the end nodes does

not matter. The more general case where different primary path connections are protected by

different protection paths will be discussed in Section 6.2.6. All operations are over the finite

field GF (q), q = 2r, where r is the length of the data unit in bits.
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6.1.2 Encoding protocol

The system works in rounds. Time is assumed to be slotted. Each data unit is assigned

a round number. In each round a new data unit di or ui is transmitted by node Si or Ti on

its primary path. In addition, it also transmits an appropriately encoded data unit in each

direction on the protection path. The encoding operation is executed by each node in S and T ,

where all nodes have sufficiently large buffers. The encoding and decoding operations only take

place between data units of the same round. When a node is transmitting and receiving data

units of certain round on the primary path, it is receiving data units of earlier rounds from the

protection paths. The nodes use the large, though bounded-size buffer to store the transmitted

and received data units for encoding and decoding. Once the encoding and decoding for a

certain round is done, the data units of that round can be removed from the buffer. Overall,

this ensures that the protocol works even when there is no explicit time synchronization between

the transmissions.

Each connection Si− Ti has 2M encoding coefficients: α
(1)
i , . . . , α

(M)
i , β

(1)
i , . . . , β

(M)
i , where

α
(k)
i and β

(k)
i are used for encoding on protection path P(k). Each protection path uses the

same protocol but different coefficients in general. The coefficients are assumed to be known by

the end nodes before the transmission. We specify the protocol for protection path P(k), which

consists of two unidirectional paths S(k) and T(k). We first define the following notations.

• σ(Si)/σ(Ti): the next node downstream from Si (respectively Ti) on S(k). σ−1(Si)/σ
−1(Ti):

the next node upstream from Si (respectively Ti) on S(k) (see example in Fig. 6.1).

• τ(Si)/τ(Ti): the next node downstream from Si (respectively Ti) onT(k). τ−1(Si)/τ
−1(Ti):

the next node upstream from Si (respectively Ti) on T(k) (see example in Fig. 6.1).

Each node transmits to its downstream node, the sum of the data units from its upstream
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node and a linear combination of the data units it has, on each unidirectional protection path.

Consider the kth protection path P(k), denote the data unit transmitted on link e ∈ S(k)

(e ∈ T(k)) by Se (Te). Node Si knows di,ûi, and Ti knows ui, d̂i. The encoding operations are

as follows.

SSi→σ(Si) = Sσ−1(Si)→Si
+ α

(k)
i di + β

(k)
i ûi,

TSi→τ(Si) = Tτ−1(Si)→Si
+ α

(k)
i di + β

(k)
i ûi,

STi→σ(Ti) = Sσ−1(Ti)→Ti
+ α

(k)
i d̂i + β

(k)
i ui, and

TTi→τ(Ti) = Tτ−1(Ti)→Ti
+ α

(k)
i d̂i + β

(k)
i ui.

We focus our discussion on node Ti. Once node Ti receives data units over both S(k) and

T(k) it adds these data units. Denote the sum as P (k)1 . Ti gets two values Sσ−1(Ti)→Ti
and

Tτ−1(Ti)→Ti
from P(k), P (k) equals

Sσ−1(Ti)→Ti
+Tτ−1(Ti)→Ti

=
∑

l:Sl∈S
α
(k)
l dl +

∑
l:Tl∈T \{Ti}

β
(k)
l ul +

∑
l:Sl∈S

β
(k)
l ûl +

∑
l:Tl∈T \{Ti}

α
(k)
l d̂l.

(6.1)

In the absence of any errors, dl = d̂l, ul = ûl for all l, most terms cancel out because the addition

operations are performed over an extension field of the binary field and P (k) = α
(k)
i di + β

(k)
i ûi.

Similar expressions can be derived for the other end nodes. See Fig. 6.1 for an example of the

encoding protocol.

6.1.3 Error model

If the adversary changes data units on one (primary or protection) path, an error happens.

If the adversary controls a link through which multiple paths pass, or the adversary controls

several links, multiple errors occur. We assume that the adversary knows the communication

1The values of P (k) are different at different end nodes. Here we focus our discussion on node Ti. To keep
the notation simple, we use P (k) instead of P

(k)
Ti
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protocols described above, including the encoding/decoding function and encoding coefficients.

There are no secrets hidden from her. If a primary or protection path is under the control of an

adversary, she can arbitrarily change the data units in each direction on that path. If di ̸= d̂i

or ui ̸= ûi (or both), we say that there is an error on primary path Si − Ti with error values

edi = di+ d̂i and eui = ui+ ûi. As for protection path error, although the error is bidirectional,

we shall see that each node will see only one error due to the nature of the encoding protocol. In

fact, even multiple errors on the same protection path can be shown to only have an aggregate

effect as one error at one node. This is because from one protection path, only the sum (P (k))

of data units from two directions is used in decoding at a node. If this data unit is changed

due to several errors, it can be modeled as one variable epk at the node. However, different

nodes will have different values of epk in general. If there is a primary path failure (as opposed

to error) on Si − Ti, we have d̂i = ûi = 0. i.e. failures are not adversarial. If a protection path

fails, it becomes useless and the end nodes ignore the data units on that path. All nodes know

the locations of failures but do not know the locations of errors.

When there are errors in the network, the error terms will not cancel out in (6.1) and Ti

obtains P (k) = α
(k)
i di + β

(k)
i (ui + eui) +

∑
l∈I\i(α

(k)
l edl + β

(k)
l eul

) + epk on protection path P(k),

where I\i = {1, . . . , n}\{i}, the index set excluding i, and epk is the error on protection path

P(k) seen by Ti. Note that since Ti knows ui, we can subtract it from this equation. Together

with the data unit Pm from the primary path, Ti has the following data units.

Pm = d̂i = di + edi , (6.2)

P (k)′ = P (k) − β
(k)
i ui = α

(k)
i di + β

(k)
i eui +

∑
l∈I\i

(α
(k)
l edl + β

(k)
l eul

) + epk , k = 1, . . . ,M(6.3)

We multiply (6.2) by α
(k)
i and add to the kth equation in (6.3) to obtain

n∑
l=1

(α
(k)
l edl + β

(k)
l eul

) + epk = α
(k)
i Pm + P (k)′ , k = 1, . . . ,M. (6.4)
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This can be represented in matrix form as



α
(1)
1 β

(1)
1 · · · α

(1)
n β

(1)
n 1 0 · · · 0

α
(2)
1 β

(2)
1 · · · α

(2)
n β

(2)
n 0 1 · · · 0

...
...

...
...

...
...

...
...

...

α
(M)
1 β

(M)
1 · · · α

(M)
n β

(M)
n 0 0 · · · 1


E = Psyn, (6.5)

where the length-(2n +M) vector E = [ed1 , eu1 , . . . , edn , eun , ep1 , . . . , epM ]T and the length-M

vector Psyn = [α
(1)
i Pm + P (1)′ , α

(2)
i Pm + P (2)′ , . . . , α

(M)
i Pm + P (M)′ ]T . Analogous to classical

coding theory, we call Psyn the syndrome available at the decoder. Denote the M × (2n+M)

coefficient matrix of (6.5) as Hext, and denote the first 2n columns of Hext as a matrix H =

[v1,v2, . . . ,v2n], where vj is the jth column of H. Then v2i−1,v2i are the columns consisting

of encoding coefficients αi’s and βi’s for the connection Si − Ti. The last M columns of Hext

form an identity matrix IM×M and can be denoted column by column as [vp
1, . . . ,v

p
M ]. Note

that Ti knows H and Psyn and shall attempt to decode di even in the presence of the errors.

Node Si gets very similar equations to those at Ti. Thus we will focus our discussion on Ti.

Each end node uses the same decoding algorithm and works individually without cooperation

and without synchronization.

6.2 Recovery from single error

In this section, we focus on the case when there is only one error in the network. We first

present the decoding algorithm and then prove its correctness under appropriate conditions.
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6.2.1 Decoding algorithm at node Ti

1. Attempts to solve the following system of equations

[v2i−1v2i]

 edi

eui

 = Psyn (6.6)

2. If (6.6) has a solution (edi , eui), compute di = Pm + edi , otherwise, di = Pm

Node Si operates similarly.

We show below that this algorithm works when the error happens on a primary path or on

one of the protection paths.

6.2.2 Condition for one primary path error correction

In this subsection, we consider primary path error only. Define an error pattern to be

the two columns in H corresponding to the erroneous primary path. If the error happens on

Si − Ti, the error pattern is {v2i−1,v2i}. An error value vector corresponding to an error

pattern is obtained by letting the error values corresponding to other n−1 primary paths to be

zero. The error value vector corresponding to error pattern {v2i−1,v2i} is the length-2n vector

Ei = [0, . . . , edi , eui , . . . , 0]
T . Assume that edi ’s and eui ’s are not all zero. The case when all of

them are zero is trivial because it implies that no error happens.

Theorem 2. Suppose there is at most one error on a primary path. The decoding algorithm out-

puts the correct data unit at every node if and only if the vectors in the set {v2i−1,v2i,v2j−1,v2j}2

for all i, j = 1, . . . , n, i ̸= j are linearly independent.

Proof: First assume that the vectors in the sets {v2i−1,v2i,v2j−1,v2j} are linearly inde-

pendent. Let Ea and Eb be error value vectors corresponding to errors happening on different

2In fact, it can be viewed as the error pattern when Si − Ti, Sj − Tj are in error.
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primary paths Sa − Ta and Sb − Tb respectively. Suppose there exist Ea and Eb such that

HEa = HEb, i.e., H(Ea + Eb) = 0. Note that the vector (Ea + Eb) has at most four error

values [eda , eua , edb , eub
] which are not all zero and such that

[v2a−1,v2a,v2b−1,v2b][eda , eua , edb , eub
]T = 0.

This implies {v2a−1,v2a,v2b−1,v2b} are linearly dependent, which is a contradiction. There-

fore, under our condition that {v2i−1,v2i,v2j−1,v2j} for all i, j = 1, . . . , n, i ̸= j are linearly

independent, there does not exist Ea, Eb such that HEa = HEb. This means that if we try to

solve the system of linear equations according to every possible error value vectors E1, . . . , En,

it either has no solution or its solution is the actual error in the network. The node Ti is only

interested in di, in our decoding algorithm, it tries to solve the equations (6.6) according to the

error value vector Ei. If it has a solution, the error happens on Si−Ti. The matrix [v2i−1,v2i]

has rank two, so equations (6.6) have unique solution for ed1 . di = Pm + edi gives decoded di.

If (6.6) does not have solution, the error is not on Si − Ti. Ti simply picks up di = Pm from

the primary path Si − Ti.

Conversely, suppose that a vector set {v2i1−1,v2i1 ,v2j1−1,v2j1} is linearly dependent. There

exist Ei1 and Ej1 such that HEi1 = HEj1 . Both equations HEi1 = Psyn and HEj1 = Psyn

have solution. Suppose the error in fact happens on Sj1 − Tj1 , the decoder at Ti1 can also find

a solution to HEi1 = Psyn and use the solution to compute di. This leads to decoding error.

If there is no error in the network, Psyn = 0 and solving (6.6) gives edi = eui = 0. In

order to make {v2i−1,v2i,v2j−1,v2j} independent, we need the length of vectors to be at least

four, i.e., M ≥ 4. In fact, we shall see that several coefficient assignment strategies ensure that

four protection paths are sufficient to make the condition hold for ∀i, j = 1, . . . , n, i ̸= j. The
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condition in Theorem 2 can be stated as all M ×M (4× 4) matrices of the form

[v2i−1,v2i,v2j−1,v2j ], i, j = 1, . . . , n, i < j (6.7)

have full rank.

6.2.3 Coefficient assignment methods

We shall introduce several ways to assign encoding coefficients, so that (6.7) has full rank.

Later we will see these schemes also work when protection path error is possible.

(1) A simple scheme of coefficient assignment and implementation. Choose n non-zero distinct

elements γ1, . . . , γn from GF (q). For all i = 1, . . . , n, α
(1)
i = 1, α

(2)
i = γi, β

(3)
i = 1, β

(4)
i = γi

and all other coefficients are zero. It can be shown by performing Gaussian elimination that

the matrix (6.7) has full rank as long as γ’s are distinct. The minimum field size needed is

q > n.

Consider decoding at node Ti, Table 6.1 is a summary of the data units Pm, Psyn that T1 gets

from primary path and protection paths under different cases. P
(k)
syn is the kth component of

Psyn. The decoding is done as follows. If P
(1)
syn and P

(2)
syn are both zero, then edl = 0,∀l, Ti

simply pick di = Pm. If P
(1)
syn and P

(2)
syn are both non-zero, Ti computes S = P

(2)
syn × (P

(1)
syn)−1. If

S = γi, the error happens on Si − Ti and the error value is edi = P
(1)
syn, then di = Pm + edi . If

S = γx, the error happens on Sx − Tx, x ̸= i, then Ti picks up di = Pm.

Note that we only used Pm, P
(1)
syn, P

(2)
syn to decode di at Ti. However, we cannot remove paths

P(3),P(4) because at Si we should use Pm, P
(3)
syn, P

(4)
syn to decode.

(2) Vandermonde matrix. The second way is to choose 2n distinct elements from GF (q) :

γα1 , γβ1 , . . . , γαn , γβn and let encoding coefficients to be α
(k)
i = γk−1

αi
, β

(k)
i = γk−1

βi
. The matrix

in equation (6.7) becomes a Vandermonde matrix and has full rank.
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Table 6.1 Data obtained by Ti under the simple coefficient assignment.
No error Error on Si − Ti Error on Sx − Tx, i ̸= x

Pm di di + edi di

P
(1)
syn 0 edi edx

P
(2)
syn 0 γiedi γxedx

P
(3)
syn 0 eui eux

P
(4)
syn 0 γieui γxeux

(3) Random choice. Besides the structured matrices above, choosing coefficients at random

from a large field also works with high probability due to the following claim.

Claim 1. When all coefficients are randomly, independently and uniformly chosen from GF (q),

for given i and j, the probability that {v2i−1,v2i,v2j−1,v2j} are linearly independent is p1 =

(1− 1/q3)(1− 1/q2)(1− 1/q).

Proof: Suppose we have chosen v2i−1, the probability that v2i is not in the span of v2i−1 is

(1 − q/q4). The probability that v2j−1 is not in the span of {v2i−1,v2i} is (1 − q2/q4). The

probability that v2j is not in the span of {v2i−1,v2i,v2j−1} is (1−q3/q4). Since the coefficients

are chosen independently, the probability that four vectors are linearly independent is the

product p1, which approaches 1 when q is large.

In (6.7) we require
(
n
2

)
matrices to have full rank. By union bound, the probability that the

linear independence condition in Theorem 2 holds is at least 1− (1− p1)
(
n
2

)
, which is close to

1 when q is large. In practice, before all the transmission, we could generate the coefficients

randomly until they satisfy the condition in Theorem 2. Then, transmit those coefficients to all

the end nodes in the network. During the actual transmission of the data units, the encoding

coefficients do not change.
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6.2.4 Taking protection path error into account

In this subsection, we take protection path errors into account. The error (assume one error

in this section) can happen either on one primary path or one protection path. Besides n error

value vectors E1, . . . , En, we have M more error value vectors for the protection path error:

[0|ep1 , 0, . . . , 0]T , . . . , [0|0, 0, . . . , epM ]T , where 0 denote an all-zero vector of length 2n. Denote

them by Ep1 , . . . , EpM . Using a similar idea to Theorem 2, we have the following:

Theorem 3. If there is one error on one primary path or protection path, the decoding algo-

rithm works for every node if and only if vectors in the sets

{v2i−1,v2i,v2j−1,v2j}, i, j = 1, . . . , n, i ̸= j (6.8)

{v2i−1,v2i,v
p
l }, i = 1, . . . , n, l = 1, . . . ,M (6.9)

are linearly independent. Note that vp
l is the lth column in IM×M in (6.5).

In fact, M = 4 suffices and the three coefficient assignment methods we described in the

previous subsection work in this case. The simple coefficient assignment strategy in Section

6.2.3(1) enables vector sets (6.8) and (6.9) to be independent. The protection path error makes

exact one component of Psyn to be nonzero. If Ti detects Psyn has only one nonzero entry, it

can just pick up the data unit from the primary path since the only error is on the protection

path.

In order to see that Vandermonde matrix also works, we shall show that the vector sets

(6.9) are linearly independent. Suppose that they are linearly dependent. Since v2i−1,v2i are

linearly independent, there exist a and b such that (take vp
1 for example): av2i−1 + bv2i = vp

1.

This means a[γαiγ
2
αi
]T + b[γβi

γ2βi
]T = 0. However, this is impossible since

det

 γαi γβi

γ2αi
γ2βi

 ̸= 0.
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Therefore, {v2i−1,v2i,v
p
1} are linearly independent. A similar argument holds for vp

l when

l ̸= 1.

When the coefficients are randomly chosen from GF (q), for given i and l, the probability

that {v2i−1,v2i,v
p
l } are linearly independent is p2 = (1 − 1/q3)(1 − 1/q2). Considering all

vector sets in Theorem 3, the probability of successful decoding at all nodes is at least 1− (1−

p1)
(
n
2

)
− (1− p2)nM , which approaches 1 when q is large.

6.2.5 Remark

We can compare our results with classical results in coding theory. In classical coding

theory, in the presence of two adversarial errors, we need a code with minimum distance at

least five for correct decoding. This means that to transmit one symbol of information, we

need to transmit a codeword with at least five symbols. In our problem, each connection has a

total of five paths (one primary and four protection). A single error on a bidirectional primary

path induces two errors, one in each direction. Therefore in an approximate sense we are using

almost the optimal number of protection paths. However, a proof of this statement seems to

be hard to arrive at. It is important to note that the protection paths are shared so the cost

of protection per primary path connection is small.

6.2.6 The case when the primary paths are protected by different protection paths

If the primary paths are protected by different protection paths, the models are similar.

Specifically, consider node Ti and it is protected by the protection path Pk, if we denote the

set of primary paths protected by protection path Pk by N(Pk) ⊆ {1, . . . , n}, the equation

obtained from protection path Pk by Ti is similar to (6.4):
∑

l∈N(Pk)
(α

(k)
l edl +β

(k)
l eul

)+ epk =

α
(k)
i Pm + P (k)′ . Now, Ti obtains Mi equations, where Mi is the number of protection paths
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protecting connection Si−Ti. The system of equations it gets is similar to (6.5), but theMi×2n

coefficient matrix H may contain zeros induced by the network topology. If connection Sl−Tl is

not protected by Pk, the corresponding two terms in the kth row are zero. The identity matrix

in Hext is IMi×Mi . The models are similar to the case when all connections are protected by

the same protection paths and the decoding algorithms and conditions in Theorem 2 and 3 still

work.

The difference comes from the coefficient assignment. H may contain some zeros depending

on the topology. In order to make (6.8),(6.9) to be linearly independent, we can use the

method of matrix completion [50]. We view the encoding coefficients in H as indeterminates

to be decided. The matrices we require to have full rank are a collection CH of submatrices

of Hext, where CH depends on the network topology. Each matrix in CH consists of some

indeterminates and possibly some zeros due to the topological constraints and ones coming

from the last M1 columns of Hext. The problem of choosing encoding coefficients can be

solved by matrix completion. A simultaneous max-rank completion of CH is an assignment of

values from GF (q) to the indeterminates that preserves the rank of all matrices in CH . After

completion, each matrix will have the maximum possible rank. Note that if H contains too

many zeros, it may be not possible to make the matrices to have the required rank when

Mi = 4. Thus, Mi = 4 is a necessary but not in general sufficient condition for successful

recovery. It is known that choosing the indeterminates at random from a sufficiently large field

can solve the matrix completion problem with high probability [51]. Hence, we can choose

encoding coefficients randomly from a large field. It is clear therefore that the general case

can be treated conceptually in a similar manner to what we discussed earlier. Thus, we shall

mainly focus on the case when the protection paths protect all the primary paths.



www.manaraa.com

78

6.3 Recovery from multiple errors

Our analysis can be generalized to multiple errors on primary and protection paths. Assume

that nc errors happen on primary paths and np = ne − nc errors happen on protection paths.

As described in Section 6.1.3, a given primary path error corresponds to two specific columns

in Hext while a protection path error corresponds to one specific column in Hext. Recall that

we view Hext as a set of column vectors : {v1,v2, . . . ,v2n−1,v2n,v
p
1,v

p
2, . . . ,v

p
M}. An error

pattern is specified by the subset of columns of Hext corresponding to the paths in error.

Definition 2. A subset of columns of Hext denoted as A(m1,m2) is an error pattern with

m1 errors on primary paths {c1, . . . , cm1} ⊆ {1, . . . , n} and m2 errors on protection paths

{p1, . . . , pm2} ⊆ {1, . . . ,M} if it has the following form: A(m1,m2) = Ac(m1) ∪ Ap(m2),

where Ac(m1) = {v2c1−1,v2c1 , . . . ,v2cm1−1,v2cm1
}, ci ∈ {1, . . . , n},∀i = 1, . . . ,m1 and

Ap(m2) = {vp
p1 , . . . ,v

p
pm2
}, pi ∈ {1, . . . ,M},∀i = 1, . . . ,m2.

Note that |A(m1,m2)| = 2m1 + m2 and the set of columns in Hext can be expressed as

A(n,M). Although our definition of error pattern is different from the conventional definition

in classical coding theory, we shall find it helpful for the discussion of our algorithms.

We let A(m1,m2) denote the family of error patterns with m1 primary path errors and m2

protection path errors (for brevity, henceforth we refer to such errors as (m1,m2) type errors).

Definition 3. Define A(m1,m2)i, a subset of A(m1,m2), to be the family of (m1,m2) type

error patterns such that each error pattern includes an error on primary path Si − Ti, i.e.,

A(m1,m2) ∈ A(m1,m2)i if and only if {v2i−1,v2i} ⊆ A(m1,m2).

Note that |A(m1,m2)| =
(

n
m1

)(
M
m2

)
and |A(m1,m2)i| =

(
n−1
m1−1

)(
M
m2

)
. Denote the family of

error patterns including an error on Si−Ti with ne errors in total as: Ai(ne) = ∪ne
nc=1A(nc, ne−

nc)i.



www.manaraa.com

79

Our definition of an error pattern has only specified the location of the error but not the ac-

tual values. An error value vector E has the following form :[ed1 , eu1 , . . . , edn , eun , ep1 , . . . , epM ]T .

Each entry of the vector corresponds to one column in Hext. An error value vector E corre-

sponds to an error pattern A(m1,m2) if in E, the entries corresponding to A(n,M)\A(m1,m2)

are zero, while the other entries may be non-zero and are indeterminates in the decoding al-

gorithm. We are now ready to present the decoding algorithm in the presence of multiple

errors.

6.3.1 Multiple errors decoding algorithm at node Ti

1. Try to solve the system of linear equations specified in (6.5) according to each error

pattern in Ai(ne). This means for each error pattern in Ai(ne), replace E in (6.5) by the

error value vector, which contains the indeterminates, corresponding to the error pattern.

2. Suppose that the decoder finds a solution to one of these system of equations. Compute

di = Pm + edi , where edi is recovered as part of the solution. If none of these systems of

equations has a solution, set di = Pm.

Node Si operates similarly.

This algorithm requires the enumeration of all error patterns in Ai(ne) and has high com-

putational complexity (exponential in the number of errors). In Section 6.3.3, a low complexity

polynomial-time algorithm will be proposed under the assumption that the errors only happen

on the primary paths.

6.3.2 Condition for error correction

Theorem 4. Suppose that there are at most ne errors in the network (both primary path

error and protection path error are possible). The result of the decoding algorithm is correct
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at every node if and only if the column vectors in A(m1,m2) are linearly independent for all

A(m1,m2) ∈ ∪nc,n′
c∈{0,...,ne}A(nc + n′

c, 2ne − (nc + n′
c)).

Proof: First we shall show that under the stated condition, the decoding algorithm works.

Suppose E1 and E2 denote two error value vectors corresponding to error patterns in A(nc, ne−

nc) and A(n′
c, ne − n′

c) respectively and E1 ̸= E2. The linear independence condition in the

theorem implies that there do not exist E1 and E2 such that HE1 = HE2. To see this, suppose

there exist such E1 and E2, then, HEsum = 0, where Esum = E1 +E2 ̸= 0 has at most nc + n′
c

errors on primary paths and np + n′
p = 2ne − (nc + n′

c) errors on protection path. These

errors correspond to a member (which is a set of column vectors) A(nc +n′
c, 2ne− (nc +n′

c)) ∈

A(nc + n′
c, 2ne − (nc + n′

c)). HEsum = 0 contradicts the linear independence of the column

vectors in A(nc + n′
c, 2ne − (nc + n′

c)). Thus, E1, E2 do not exist for HE1 = HE2. This means

that if a decoder tries to solve every system of linear equations according to every possible

error patterns with ne errors, it either gets no solution, or gets the same solution for multiple

solvable systems of linear equations. A decoder at Ti is only interested in error patterns in

Ai(ne). If in step 1 it finds a solution E for one system of equation, edi in E is the actual error

value for di and di = Pm + edi , otherwise, no error happens on Si − Ti.

Conversely, if there exist some nc, n
′
c such that some member in A(nc+n′

c, 2ne− (nc+n′
c))

is linearly dependent, there exist E′
1 and E′

2 such that HE′
1 = HE′

2 and E′
1 ̸= E′

2. This implies

that there exists an i1 such that either edi1 or eui1
is different. At node Ti1 or Si1 , the decoder

has no way to distinguish which one is the actual error value vector and the decoding fails.

The above condition is equivalent to the fact that all vector sets

A(m1,m2) ∈ ∪m∈{0,...,2ne}A(m, 2ne −m)

are linearly independent. |A(m, 2ne−m)| = 2ne+m and its maximum is 4ne. Thus, the length
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of the vectors should be at least 4ne. In fact, M = 4ne is sufficient under random chosen

coefficients. Suppose that the coefficients are randomly and uniformly chosen from GF (q). For

a fixed m, the probability that A(m, 2ne −m) = Ac(m) ∪Ap(2ne −m) is linearly independent

is p1(m) =
∏2m−1

i=0 (1 − q2ne−m+i/qM ). Considering all members in A(m, 2ne − m) and all

values of m, by union bound, the probability for successful decoding is at least 1−
∑2ne

m=0(1−

p1(m))
(
n
m

)(
M

2ne−m

)
, which approaches 1 when q is large.

6.3.3 Reed-Solomon like efficient decoding for primary path error only case

If the errors only happen on primary paths, the condition in Theorem 4 becomes that

each member of A(2ne, 0) is linearly independent. We can choose H so that Hij = (αi)j−1,

where α is the primitive element over GF (q), with q > 2n. This is a parity check matrix

of a (2n, 2n −M) Reed-Solomon code. Denote it by HRS . Any M (M = 4ne) columns of

HRS are linearly independent and satisfies the condition in Theorem 4. Thus, (6.5) becomes

HRS [ed1 , eu1 , . . . , edn , eun ]
T = Psyn, in which HRS and Psyn are known by every node. The

decoding problem becomes to find an error pattern with at most ne errors and the corresponding

error value vector. Note that in fact there are 2ne error values to be decided. This problem

can be viewed as RS hard decision decoding problem while the number of errors is bounded

by 2ne. Psyn can be viewed as the syndrome of a received message. We can apply Berlekamp-

Massey algorithm (BMA) for decoding. It is an efficient polynomial time algorithm, while

the proposed algorithm in Section 6.3.1 has exponential complexity. Further details about RS

codes and BMA can be found in [20].
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6.4 Recovery from a combination of errors and failures

We now consider a combination of errors and failures on primary and protection paths.

Recall that when a primary path or a protection path is in failure, then all the nodes are

assumed to be aware of the location of the failure. Assume that there are a total of nf failures

in the network, such that nfc failures are on primary paths and nfp = nf − nfc failures are on

protection paths. If a protection path has a failure it is basically useless and we remove the

equation corresponding to it in error model (6.5). Thus, we shall mainly work with primary

path failures and error model (6.5) will have M ′ = M − nfp equations. In our error model,

when a primary path failure happens, d̂i = 0 (ûi = 0 respectively). We can treat a primary

path failure as a primary path error with error value edi = di (eui = ui respectively). In

the failure-only case considered in [25], nfc protection paths are needed for recovery from nfc

primary path failures. However, the coefficients are chosen such that α
(k)
i = β

(k)
i ,∀i, k, which

violates the condition for error correction discussed before. Thus, we need more paths when

faced with a combination of errors and failures.

The decoding algorithm and condition in this case are very similar to multiple error case.

An important difference is that the decoder knows the location of nf failures. To handle the

case of failures, we need to modify some definitions in Section 6.3.

Definition 4. A subset of columns of H denoted by F (nfc) is said to be a failure pattern

with nfc failures on primary paths {f1, . . . , fnfc
} ⊆ {1, . . . , n} if it has the following form:

F (nfc) = {v2f1−1,v2f1 , . . . ,v2fnfc
−1,v2fnfc

},fi ∈ {1, . . . , n}.

Definition 5. An error/failure pattern with m1 primary path errors, m2 protection path er-

rors and failure pattern F (nfc) is defined as AF (m1,m2, F (nfc)) = A(m1,m2)\F (nfc )
∪F (nfc),

where A(m1,m2)\F (nfc )
∈ A(m1,m2) and is such that A(m1,m2)\F (nfc )

∩ F (nfc) = ∅, i.e.,
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A(m1,m2)\F (nfc )
is a (m1,m2) type error, of which the primary path errors do not happen on

failed paths in F (nfc).

We letAF (m1,m2, F (nfc)) denote the family of error/failure patterns withm1 primary path

errors, m2 protection path errors ((m1,m2) type errors) and a fixed failure pattern F (nfc).

Definition 6. Define a subset of AF (m1,m2, F (nfc)), denoted as AF (m1,m2, F (nfc))i to

be the family of error/failure patterns such that each pattern includes an error or failure

on Si − Ti, i.e., AF (m1,m2, F (nfc)) ∈ AF (m1,m2, F (nfc))i if and only if {v2i−1,v2i} ⊆

AF (m1,m2, F (nfc)).

An error/failure value vector E corresponds to an error/failure pattern AF (m1,m2, F (nfc))

if the entries corresponding to A(n,M)\AF (m1,m2, F (nfc)) are zero, while the other entries

may be non-zero.

6.4.1 Decoding algorithm at node Ti for combined failures and errors

1. Note that Ti knows the failure pattern for all primary paths F (nfc). It tries to solve

equations of (6.5) form according to each error/failure pattern in ∪ne
nc=1A

F (nc, ne −

nc, F (nfc))i. The indeterminates are given by the error value vector corresponding to

the error pattern.

2. Suppose that the decoder finds a solution to one of these system of equations. Compute

di = Pm + edi ; If none of these systems of equations has a solution, set di = Pm.

Node Si operates similarly.
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6.4.2 Condition for errors/failures correction

Theorem 5. Suppose there is at most ne errors and nfc primary path failures in the network,

both primary path error and protection path error are possible. The decoding algorithm works

at every node if and only if the column vectors in A(m1,m2) are linearly independent for all

A(m1,m2) ∈ ∪m∈{0,...,2ne}A(nfc +m, 2ne −m).

Proof: The condition implies that for all nc, n
′
c ∈ {0, . . . , ne} and all possible failure patterns

F (nfc), each member in AF (nc + n′
c, 2ne − (nc + n′

c), F (nfc)) contains linearly independent

vectors. The rest of the proof is similar to Theorem 4 and is omitted.

The maximum number of vectors contained in each such error pattern is 4ne+2nfc . Thus, we

need at leastM ′ = 4ne+2nfc equations in (6.5) which implies in turn thatM = 4ne+2nfc+nfp .

Since we don’t know nfc , nfp a priori, we need at least M = 4ne + 2nf since in the worse case,

all failures could happen on the primary paths. On the other hand, M = 4ne+2nf is sufficient

under random choice of coefficients from a large enough field.

If we restrict the errors/failures to be only on the primary paths, then the condition becomes

each member of A(2ne + nf , 0) is linearly independent and we can choose H to be the parity-

check matrix of a (2n, 2n−4ne−2nf ) RS code. In error/failure value vector E, the locations of

the failures are known. The decoding problem can be viewed as the RS hard decision decoding

problem while the number of error values is bounded by 2ne and the number of failure values

is bounded by 2nf . It can be done by a modified BMA [20] that works for errors and erasures.

6.5 Simulation results and comparisons

In this section, we shall show how our network coding-based protection scheme can save

network resources by some simulations. Under our adversary error model, when the adversary
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controls a single link, one simple protection scheme is to provision three edge-disjoint paths

for each primary connection, analogous to a (3,1) repetition code. This is referred to as a

2+1 scheme, meaning that two additional paths are used to protect one connection. We call

our proposed scheme 4+n, i.e., four additional paths are used to protect n connections. It is

expected that when n becomes large, 4+n will use fewer resources than 2+1. We provisioned

primary and protection paths for both cases and compared their cost. Our protection scheme

can be used in different networks including optical network deployed in a large area, or any

overlay network no matter what the underlying supporting network and the scale of the network

are.

In the simulation, we use two networks: 1) Labnet03 network for North America [52, 53]

(Fig.6.2), 2) COST239 Network for Europe [52, 54] (Fig.6.3). Our integer linear programming

(ILP) for the proposed 4+n scheme is formulated as follows. The network topology is modelled

as an undirected graph G = (V,E). Considering that usually there are multiple optical fibers

between two cities, we inflate the graph G such that each edge is copied for several times (four

times in our simulations), i.e., there are four parallel edges between the nodes. An edge (i, j)

in G is replaced by edges (i, j)1, (i, j)2, (i, j)3, (i, j)4 in the inflated graph. The set of unicast

connections to be established is given in N = {(S1, T1), . . . , (Sn, Tn)}. In order to model the

protection paths as flows, we add a virtual source s and a virtual sink t to the network and

connect s and t with the end nodes of connections in N . This procedure is illustrated in Fig.

6.4. We call this inflated graph G′ = (V ′, E′). Every edge (i, j)k connecting node i and j is

associated with a positive number cij , the cost of per unit flow of this link, which is proportional

to the distance between the nodes i and j. Assume that each link has enough capacity so there

is no capacity constraint. We hope to find the optimal 4 + n paths that satisfy appropriate
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constraints on the topology 3 in the network that minimize the total cost. One protection

path can be viewed as a unit flow from s to t, while one primary path Si − Ti can be viewed

as a unit flow from Si to Ti. Therefore, the problem can be formulated as a minimum cost

flow problem under certain conditions. Each edge (i, j)k is associated with 4 + n binary flow

variables fm
ij,k, 1 ≤ m ≤ n + 4, which equals 1 if path m passes through edge (i, j)k and 0

otherwise. The ILP is formulated as follows.

min
∑

(i,j)k∈E′

∑
1≤m≤n+4

cijf
m
ij,k. (6.10)

The constraints are such that

1. Flow conservation constraints hold for primary paths and protection paths.

2. Each protection path should pass through the end nodes of all the connections.

3. The primary paths are edge-disjoint.

4. The primary paths and the protection paths are edge-disjoint.

5. The protection paths are edge-disjoint.

The minimization is over fm
ij,k, (i, j)k ∈ E′, 1 ≤ m ≤ 4 + n and some auxiliary variables

that are used to mathematically describe the constraints. We assume that when an adversary

attacks an edge in the network she can control all paths going through that link. Thus, we have

edge-disjoint constraints so that she only causes one path in error in the network. For detailed

mathematical description of the constraints, please refer to [26] to see a similar formulation.

We call this formulation as ILP1.

3we only provision one set of protection paths for connections in N . We could optimally partition N into
several subsets, each of which is protected by a set of protection paths as in [26]. It will give us better solution
but greatly complicates the ILP. In our simulation, the 4+n scheme shows gains under the simpler formulation.
Thus, we simulate under the simpler formulation.



www.manaraa.com

87

0 Seattle

1 SF

2 LA
3 Phoenix

15 Las Vegas

4 Dallas

5 Houston

6 Miami

7 Atlanta

8 DC

9 NY

10 Boston

11 Toronto

12 Chicago
17 Buffalo

13 Cleveland

14 Kansas City
16 Denver

18 New Orleans

19 Orlando

(a) Labnet03 Network

Edge cij Edge cij Edge cij Edge cij Edge cij Edge cij

0-1 25 0-4 63 0-14 57 0-12 65 0-11 80 1-2 14

1-4 55 1-8 109 1-14 60 1-16 37 1-9 115 1-12 74

2-15 13 2-4 50 2-3 18 2-8 105 3-15 12 3-5 39

4-5 10 4-14 24 4-12 42 4-9 70 4-8 60 5-8 57

5-7 42 5-18 15 5-6 47 6-18 32 6-19 10 6-7 23

7-19 12 7-12 37 7-8 17 8-14 50 8-12 39 8-13 23

8-9 15 8-10 27 9-14 55 9-13 23 9-12 40 9-11 29

9-10 12 10-17 26 10-11 34 11-17 11 12-14 20 12-13 18

13-17 9 14-16 22 15-16 25 18-19 26 4-7 47

(b) Link costs of Labnet03 network.

Figure 6.2 Labnet03 network with 20 nodes and 53 edges in North America.

We also provision the paths for 2+1 scheme. The provisioning of the paths also minimizes

the total cost, i.e., the objective is to minimize
∑

(i,j)k∈E′(
∑

1≤m≤n

∑
1≤l≤3 cijf

ml
ij,k), where f

ml
ij,k

is the flow variable for the lth path of the mth primary connection. Furthermore, the three

paths for one connection should be edge-disjoint. We call this formulation as ILP2.

However, in general G′ contains a large number of edges which result in a long computation

time for ILP1. In order to simulate and compare efficiently, instead of solving the ILP1

directly, we present an upper bound of the cost for our proposed 4+n scheme that can be

computed much faster. The connection set N is chosen as follows. Instead of choosing n
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Figure 6.3 COST239 network with 11 nodes and 26 edges in Europe.

connections at random, we choose n/2 connections at random (denoted as the connection

set N 1
2
) and duplicate those connections to obtain N . So there are two independent unicast

connections between two cities. We remove the fifth constraint (edge-disjointness of protection

paths) from ILP1 and run the ILP instead on the original graph G for N 1
2
. We call this ILP

as ILP3. Then, we modify the optimal solution of ILP3 properly to obtain a feasible solution

of ILP1 for n connections on G′. This is illustrated in Fig. 6.5.

The cost of this feasible solution is an upper bound of the optimal cost of ILP1. And from

the simulation for a small number of connections we observe that the bound is approximately

10% larger than the actual optimal cost. It turns out that solving ILP2 is fast, therefore we

obtain the actual optimal cost for the 2+1 scheme.

In the simulation, we choose |N 1
2
| from 5 to 9 such that n goes from 10 to 18. The ILPs
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Figure 6.4 Inflation of G. The left one is the original graph G. The unicast connections of
interest are N = {(S1, T1), (S2, T2)}. The right one is the inflated graph G′.

are solved by CPLEX. The costs for the 4+n scheme and 2+1 scheme are averaged over five

realizations of N 1
2
. The average costs and percentage gains for different number of connections

are presented in Table.6.2. and Table.6.3. As we expected, the gain of our proposed scheme

increases with the number of connections.

Table 6.2 Comparison of the average costs for Labnet03 network
n Average cost for 4+n (upper bound) Average cost for 2+1 Percentage gain

10 1826 1916.4 4.72%

12 2106.4 2295.6 8.24%

14 2339.6 2598.8 9.97%

16 2677.6 3049.2 12.19%

18 3105.2 3660 15.16%

Intuitively, our proposed scheme will have more gain when the connections are over long

distances, e.g., connections between the east coast and the west coast of the US. Roughly

speaking, the number of paths crossing the long distance (inducing high cost) is 4 + n for our

scheme, while it is 3n for the 2+1 scheme. We also ran some simulation on Labnet03 network

to verify this by choosing the connections to cross the America continent. For a ten connections

setting, we observed 36.7% gain. And when n = 6 and n = 7, we observed up to 15.5% and
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Figure 6.5 A feasible solution of ILP1 is obtained from the optimal solution
of ILP3. In this example, N 1

2
= {(S1, T1), (S2, T2)} and the set

of unicast connections N = {(S1, T1), (S2, T2), (S3, T3), (S4, T4)}, where
S1 = S3, T1 = T3, S2 = S4, T2 = T4. Suppose the left graph is the optimal solution
obtained from ILP3 on G for N 1

2
. The bold edges indicate that four protection

paths pass through those edges. The right graph is a feasible solution of ILP1 on
G′. The protection paths are split into four copies of edges so that the fifth con-
straint (edge-disjointness of protection paths) hold. And the paths S1−T1, S2−T2

are copied to establish S3−T3, S4−T4. It remains feasible because in G′ there are
four such paths for each connection and now we only occupy two of them.

17.8% gains respectively. We conclude that our 4+n scheme is particularly efficient in allocating

network resources when the primary paths are over long distances or have high cost.

6.6 Conclusions

In this paper we considered network coding based protection strategies against adversarial

errors for multiple unicast connections that are protected by shared protection paths. Each

unicast connection is established over a primary path and the protection paths pass through

the end nodes of all connections. We demonstrated suitable encoding coefficient assignments

and decoding algorithms that work in the presence of errors and failures. We showed that when

the adversary is introducing ne errors, which may be on primary paths or protection paths, 4ne

protections are sufficient for data recovery at all the end nodes. More generally, when there



www.manaraa.com

91

Table 6.3 Comparison of the average costs for COST239 network
n Average cost for 4+n (upper bound) Average cost for 2+1 Percentage gain

10 1226 1245 1.53%

12 1548 1628.4 4.94%

14 1742.4 1854 6.02%

16 1810.8 1958.4 7.54%

18 1883.2 2114.4 10.93%

are ne errors and nf failures on primary or protection paths, 4ne + 2nf protection paths are

sufficient for correct decoding at all the end nodes. Simulations show that our proposed scheme

saves network resources compared to the 2+1 protection scheme, especially when the number

of primary paths is large or the costs for establishing primary paths are high, e.g., long distance

primary connections.

Future work includes investigating more general topologies for network coding-based pro-

tection. The 2+1 scheme can be viewed as one where there is usually no sharing of protection

resources between different primary connections, whereas the 4+n scheme enforces full sharing

of the protection resources. Schemes that exhibit a tradeoff between these two are worth inves-

tigating. For example, one could consider provisioning two primary paths for each connection,

instead of one and design corresponding network coding protocols. This would reduce the

number of protection paths one needs to provision, and depending on the network topology,

potentially have a lower cost. It is also interesting to further examine the resource savings

when we partition the primary paths into subsets and provision protection resources for each

subset separately. Furthermore, in this paper we considered an adversarial error model. When

errors are random, we could use classical error control codes to provide protection. But it is

interesting to consider schemes that combine channel coding across time and the coding across

the protection paths in a better manner. A reviewer has pointed out that rank metric codes
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[32] might be also useful for this problem.
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CHAPTER 7. Conclusions and future work

This dissertation addresses problems in distributed compression and network error protec-

tion using algebraic approaches. In the distributed compression domain, we proposed practical

coding schemes for Slepian-Wolf problems in the case of nonbinary sources and more than two

sources. Our main contributions are as follows.

• We proposed the usage of Reed-Solomon codes and the algebraic soft decoding algorithm

of Reed-Solomon codes for the asymmetric and the symmetric version of Slepian-Wolf code

design problem. Reed-Solomon codes are easy to design and offer natural rate adaptivity.

Being codes defined over nonbinary fields, Reed-Solomon codes are suitable for handling

symbol level correlations between nonbinary sources. The performance of Reed-Solomon

codes was compared with dedicated and rate adaptive multistage LDPC codes [46], where

each LDPC code is used to compress the individual bit planes. Our simulations show

that in classical Slepian-Wolf scenario, Reed-Solomon codes outperform both dedicated

and rate-adaptive LDPC codes under q-ary symmetric correlation, and are better than

rate-adaptive LDPC codes in the case of sparse correlation models, where the conditional

distribution of the sources has only a few dominant entries. In a feedback scenario, the

performance of Reed-Solomon codes is comparable with both designs of LDPC codes

under q-ary symmetric correlations but worse than LDPC codes under sparse correlation

models. In addition, the performance of Reed-Solomon codes remains constant across a
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family of correlation structures with the same conditional entropy. Our simulations also

demonstrate that the performance of Reed-Solomon codes in the presence of inaccuracies

in the joint distribution of the sources is much better as compared to multistage LDPC

codes.

• We presented practical coding schemes for the Slepian-Wolf coding problem for more than

two correlated sources. The correlation model of interest is given by a system of linear

equations, a generalization of the work of [19]. We propose a transformation of correlation

model and a way to determine proper decoding schedules, both of which are required to

obtain optimal sum rate. Our scheme allows us to exploit more correlations than those

in the previous work. Simulation results show that the proposed coding scheme has

lower sum rate than the previous work in both the classical Slepian-Wolf coding scenario

without feedback and the feedback scenario.

• As a special case of the distributed compression problem, we studied the problem of

compressing sparse vectors from finite fields. We proposed a novel approach to use list

decoding in syndrome decoding, allowing more nonzero elements in the vector to be

compressed given the fixed compression rate. Based on this idea, we proposed improved

compression schemes for network coding vectors using erasure decoding and list decoding.

The overheads required by our schemes are lower than the error-correction-based scheme

proposed in [22] in most practical scenarios.

Overall, we shown that judicious ways of applying algebraic codes can improve the compression

efficiency in various scenarios. Some open questions are as follows.

• The performance comparison between Reed-Solomon codes and multistage LDPC codes

can be done further. There are very few results on the performance of multistage LDPC
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codes for correlation sources from large alphabets. The LDPC codes can be designed

and optimized more carefully and it is expected that their performance shall improve.

On the other hand, more sophisticated multiplicity assignment algorithms can be used in

Koetter-Vardy algorithm and it is expected that the performance of Reed-Solomon codes

shall also improve. The usage of more complicated algebraic-geometry codes [55], e.g.,

Hermitian codes [56] could also be studied.

• In this dissertation, we consider additive error correlation model when using Reed-

Solomon codes for symmetric Slepian-Wolf coding. The problems for more general cor-

relation model for two or more than two sources are still challenging. Due to increased

dimension, the problems do not have a simple connection to channel coding. The idea

from algebraic perspective may still be interesting, e.g., one could consider trivariate (or

even more) polynomial interpolation. However, there are nontrivial differences between

bivariate and trivariate polynomials. Using algebraic codes in more general Slepian-Wolf

problems is an interesting future work.

In the later part of the dissertation, network error correction problem was investigated. Our

main contributions are as follows.

• We propose a network-coding based scheme to protect multiple bidirectional unicast

connections against adversarial errors and failures in a network. The network consists

of a set of bidirectional primary path connections that carry the uncoded traffic. The

end nodes of the bidirectional connections are connected by a set of shared protection

paths that provide the redundancy required for protection. Suppose that ne paths are

corrupted by the omniscient adversary, which could be the primary paths or protection

paths. Under our proposed protocol, the errors can be corrected at all the end nodes
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with 4ne protection paths. More generally, if there are ne adversarial errors and nf

failures, 4ne + 2nf protection paths are sufficient. The number of protection paths only

depends on the number of errors and failures being protected against and is independent

of the number of unicast connections. Simulations show that our proposed scheme saves

network resources compared to the 2+1 protection scheme, especially when the number

of primary paths is large or the costs for establishing primary paths are high, e.g., long

distance primary connections.

The possible future research directions could be as follows.

• The decoding algorithm proposed in this dissertation has exponential complexity if errors

on protection paths are possible. We are unable to use a simple Reed-Solomon code for

coefficient assignment because of the fixed identity matrix part of the coefficient matrix.

It is interesting to investigate the problem from algebraic perspective to look for coefficient

assignment methods and corresponding decoding algorithms with low complexity.

• We could investigate more general topologies for network coding-based protection. The

2+1 scheme can be viewed as one where there is usually no sharing of protection resources

between different primary connections, whereas the 4+n scheme enforces full sharing of

the protection resources. Schemes that exhibit a tradeoff between these two are worth

investigating. For example, one could consider provisioning two primary paths for each

connection, instead of one and design corresponding network coding protocols. This would

reduce the number of protection paths one needs to provision, and depending on the

network topology, potentially have a lower cost. It is also interesting to further examine

the resource savings when we partition the primary paths into subsets and provision

protection resources for each subset separately.
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• Rank metric codes [32] have been proposed for error correction in the network-coded

multicast scenario. As a reviewer pointed out, rank metric codes might be also useful for

protecting multiple unicast connections in our problem.
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